generated from USC-EE-250L-Spring-2023/lab-10
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
177 lines (144 loc) · 6.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import time
import numpy as np
from typing import List, Optional
import threading
import pandas as pd
import requests
import plotly.express as px
def generate_data() -> List[int]:
"""Generate some random data."""
return np.random.randint(100, 10000, 1000).tolist()
def process1(data: List[int]) -> List[int]:
""" given a list of integers, returns a new list of integers where each integer is the closest prime number
to the corresponding integer in the original list that's greater than the original integer
Args:
data: a list of integers
Returns:
List[int]: a list of prime numbers that are each the closest prime number that's
greater than each of the integers in the data list
"""
def foo(x):
"""Find the next largest prime number."""
while True:
x += 1
if all(x % i for i in range(2, x)):
return x
return [foo(x) for x in data]
def process2(data: List[int]) -> List[int]:
""" given a list of integers, returns a new list of integers where each integer is the closest perfect square
to the corresponding integer in the original list that's greater than the original integer
Args:
data: a list of integers
Returns:
List[int]: a list of perfect squares that are each the closest perfect square that's
greater than each of the integers in the data list
"""
def foo(x):
"""Find the next perfect square."""
while True:
x += 1
if int(np.sqrt(x)) ** 2 == x:
return x
return [foo(x) for x in data]
def final_process(data1: List[int], data2: List[int]) -> List[int]:
""" given two lists of integers, returns the average difference between the nth
element in the first list and the nth element in the second list
"""
return np.mean([x - y for x, y in zip(data1, data2)])
# TODO: Change this to the IP address of your server
offload_url = 'http://172.20.10.3:5000'
# offload_url = 'http://127.0.0.1:5000'
def run(offload: Optional[str] = None) -> float:
"""Run the program, offloading the specified function(s) to the server.
Args:
offload: Which function(s) to offload to the server. Can be None, 'process1', 'process2', or 'both'.
Returns:
float: the final result of the program.
"""
data = generate_data()
if offload is None: # in this case, we run the program locally
data1 = process1(data)
data2 = process2(data)
elif offload == 'process1':
data1 = None
def offload_process1(data):
nonlocal data1
# TODO: Send a POST request to the server with the input data
response = requests.post(f"{offload_url}/process1", json=data)
data1 = response.json()
thread = threading.Thread(target=offload_process1, args=(data,))
thread.start()
data2 = process2(data)
thread.join()
# Question 2: Why do we need to join the thread here?
# Question 3: Are the processing functions executing in parallel or just concurrently? What is the difference?
# See this article: https://oxylabs.io/blog/concurrency-vs-parallelism
# ChatGPT is also good at explaining the difference between parallel and concurrent execution!
# Make sure to cite any sources you use to answer this question.
elif offload == 'process2':
# TODO: Implement this case
data2 = None
def offload_process2(data):
nonlocal data2
# TODO: Send a POST request to the server with the input data
response = requests.post(f"{offload_url}/process2", json=data)
data2 = response.json()
thread = threading.Thread(target=offload_process2, args=(data,))
thread.start()
data1 = process1(data)
thread.join()
elif offload == 'both':
data1 = None
data2 = None
def offload_process1(data):
nonlocal data1
# TODO: Send a POST request to the server with the input data
response = requests.post(f"{offload_url}/process1", json=data)
data1 = response.json()
def offload_process2(data):
nonlocal data2
# TODO: Send a POST request to the server with the input data
response = requests.post(f"{offload_url}/process2", json=data)
data2 = response.json()
thread1 = threading.Thread(target=offload_process1, args=(data,))
thread2 = threading.Thread(target=offload_process2, args=(data,))
thread1.start()
thread2.start()
thread1.join()
thread2.join()
ans = final_process(data1, data2)
return ans
def main():
# TODO: Run the program 5 times for each offloading mode, and record the total execution time
# Compute the mean and standard deviation of the execution times
# Hint: store the results in a pandas DataFrame, use previous labs as a reference
data = []
for mode in [None, 'process1', 'process2', 'both']:
runtimes = []
for i in range(5):
start = time.time()
runtime = run(mode)
end = time.time()
runtime = end - start
runtimes.append(runtime)
runtime_mean = np.mean(runtimes)
runtime_std = np.std(runtimes)
if mode is None:
data.append(('None', runtime_mean, runtime_std))
continue
data.append((mode, runtime_mean, runtime_std))
df = pd.DataFrame(
data, columns=['mode', 'runtime_mean', 'runtime_std'])
# TODO: Plot makespans (total execution time) as a bar chart with error bars
# Make sure to include a title and x and y labels
fig = px.bar(df, x='mode', y='runtime_mean', error_y='runtime_std')
fig.update_layout(title='Execution time by Offloading Mode', xaxis_title='Offloading Mode', yaxis_title='Execution Time (s)')
# TODO: save plot to "makespan.png"
fig.write_image('makespan.png')
# Question 4: What is the best offloading mode? Why do you think that is?
# Question 5: What is the worst offloading mode? Why do you think that is?
# Question 6: The processing functions in the example aren't very likely to be used in a real-world application.
# What kind of processing functions would be more likely to be used in a real-world application?
# When would you want to offload these functions to a server?
if __name__ == '__main__':
main()