-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathparts_new.py
841 lines (739 loc) · 33.3 KB
/
parts_new.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
import FreeCAD
import Part
import DraftVecUtils
import inspect
import logging
import fcfun
import kcomp
import NuevaClase
from NuevaClase import Obj3D
from fcfun import V0, VX, VY, VZ
from kcomp import TOL
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class NemaMotorHolder(Obj3D):
"""
Creates a holder for a Nema motor. Similar to NemaMotorHolder but creating
the classes defined for shapes and parts. See shp_clss and fc_clss
::
axis_d
:
:
________:_________
|| ||
|| O __ O ||
|| / \ ||
|| | | ||
|| \ / ||
|| O __ O ||
||________________|| .....
||________________|| ..... wall_thick.....> axis_w
motor_xtr_space motor_xtr_space
:: :: ::
_::____________::_ ___::____________ ..............> axis_d
| :: : : :: | | : : | + motorside_thick
|__::__:____:__::__| 0.1....:..3..:....5....:
|| || | : /
|| || || || | : /
|| || || || | : /
|| || || || | : /
|| || || || | : /
||________________|| |_: /
:: : : :
+ reinf_thick :....tot_d........:
: :
v v
axis_h axis_h
axis_d
:
________5_________
|| ||
|| O 4_ O ||
|| / \ ||
|| | 3 | ||
|| \ / ||
|| O 2_ O ||
||_______1________|| .....
||_______o____::__|| ..... wall_thick.....> axis_w
0 1 2 3 (axis_w)
________o_________ ....................................> axis_w
| :: : : :: | :
|__::__:_1__:__::__|.................... :
|| ||....+ motor_min_h : :
|| || 2 || || : +tot_h
|| || || || + motor_max_h :
|| || || || : :
|| || 3 || ||...................: :
||_______4________||..................................:
: : : : :
: : v : :
: : axis_h : :
: : : :
: :..........: :
: bolt_wall_sep :
: :
: :
:.....tot_w........:
pos_o (origin) is at pos_d=0, pos_w=0, pos_h=0, it's marked with o
Parameters:
-----------
nema_size : int
Size of the motor (NEMA)
wall_thick: float
Thickness of the side where the holder will be screwed to
motorside_thick: float
Thickness of the top side where the motor will be screwed to
reinf_thick: float
Thickness of the reinforcement walls
motor_min_h: float
Distance of from the inner top side to the top hole of the bolts to
attach the holder (see drawing)
motor_max_h: float
Distance of from the inner top side to the bottom hole of the bolts to
attach the holder
rail: int
1: the holes for the bolts are not holes, there are 2 rails, from
motor_min_h to motor_max_h
0: just 2 pairs of holes. One pair at defined by motor_min_h and the
other defined by motor_max_h
motor_xtr_space: float
Extra separation between the motor and the wall side
and also between the motor and each of the sides
bolt_wall_d: int/float
Metric of the bolts to attach the holder
bolt_wall_sep: float
Separation between the 2 bolt holes (or rails). Optional.
chmf_r: float
Radius of the chamfer, whenever chamfer is done
axis_h: FreeCAD Vector
Axis along the axis of the motor
axis_d: FreeCAD Vector
Axis normal to surface where the holder will be attached to
axis_w: FreeCAD Vector
Axis perpendicular to axis_h and axis_d, symmetrical (not necessary)
pos_d : int
Location of pos along axis_d (0,1,2,3,4,5)
0: at the beginning, touching the wall where it is attached
1: at the inner side of the side where it will be screwed
2: bolts holes closed to the wall to attach the motor
3: at the motor axis
4: bolts holes away from to the wall to attach the motor
5: at the end of the piece
pos_w : int
Location of pos along axis_w (0,1,2,3). Symmetrical
0: at the center of symmetry
1: at the center of the rails (or holes) to attach the holder
2: at the center of the holes to attach the motor
3: at the end of the piece
pos_h : int
Location of pos along axis_h (0,1,2,3)
0: at the top (on the side of the motor axis)
1: inside the motor wall
2: Top end of the rail
3: Bottom end of the rail
4: Bottom end of the piece
pos : FreeCAD.Vector
Position of the piece
"""
def __init__(self, nema_size=17,
wall_thick=4.,
motorside_thick=4.,
reinf_thick=4.,
motor_min_h=0.,
motor_max_h=0.,
rail=1, # if there is a rail or not at the profile side
motor_xtr_space=2., # counting on one side
bolt_wall_d=4., # Metric of the wall bolts
bolt_wall_sep=0, # optional
chmf_r=1.,
axis_h=VZ,
axis_d=VX,
axis_w=None,
pos_h=1, # 1: inner wall of the motor side
pos_d=3, # 3: motor axis
pos_w=0, # 0: center of symmetry
pos=V0,
model_type=3, # to be printed
name=None):
self.pos = FreeCAD.Vector(0, 0, 0)
self.position = pos
if name is None:
name = 'nema' + str(nema_size) + '_motorholder'
if axis_w is None or axis_w == V0:
axis_w = axis_h.cross(axis_d)
NuevaClase.Obj3D.__init__(self, axis_d, axis_w, axis_h, name)
# save the arguments as attributes:
frame = inspect.currentframe()
args, _, _, values = inspect.getargvalues(frame)
for i in args:
if not hasattr(self, i):
setattr(self, i, values[i])
# normal axes to print without support
self.prnt_ax = self.axis_h
self.motor_w = kcomp.NEMA_W[nema_size]
self.motor_bolt_sep = kcomp.NEMA_BOLT_SEP[nema_size]
self.motor_bolt_d = kcomp.NEMA_BOLT_D[nema_size]
self.boltwallshank_r_tol = kcomp.D912[bolt_wall_d]['shank_r_tol']
self.boltwallhead_l = kcomp.D912[bolt_wall_d]['head_l']
self.boltwallhead_r = kcomp.D912[bolt_wall_d]['head_r']
self.washer_thick = kcomp.WASH_D125_T[bolt_wall_d]
# calculation of the bolt wall separation
self.max_bolt_wall_sep = self.motor_w - 2 * self.boltwallhead_r
if bolt_wall_sep == 0:
self.bolt_wall_sep = self.max_bolt_wall_sep
elif bolt_wall_sep > self.max_bolt_wall_sep:
logger.debug('bolt wall separtion too large: ' + str(bolt_wall_sep))
self.bolt_wall_sep = self.max_bolt_wall_sep
logger.debug('taking larges value: ' + str(self.bolt_wall_sep))
elif bolt_wall_sep < 4 * self.boltwallhead_r:
logger.debug('bolt wall separtion too short: ' + str(bolt_wall_sep))
self.bolt_wall_sep = self.max_bolt_wall_sep
logger.debug('taking larges value: ' + str(self.bolt_wall_sep))
# else: the given separation is good
# distance from the motor to the inner wall (in axis_d)
self.motor_inwall_space = (motor_xtr_space + self.boltwallhead_l + self.washer_thick)
# making the big box that will contain everything and will be cut
self.tot_h = motorside_thick + motor_max_h + 2 * bolt_wall_d
self.tot_w = 2 * reinf_thick + self.motor_w + 2 * motor_xtr_space
self.tot_d = (wall_thick + self.motor_w + self.motor_inwall_space)
# distance from the motor axis to the wall (in axis_d)
self.motax2wall = wall_thick + self.motor_inwall_space + self.motor_w/2.
# definition of which axis is symmetrical
self.h0_cen = 0
self.d0_cen = 0
self.w0_cen = 1 # symmetrical
# vectors from the origin to the points along axis_h:
self.h_o[0] = V0
self.h_o[1] = self.vec_h(motorside_thick)
self.h_o[2] = self.vec_h(motorside_thick + motor_min_h)
self.h_o[3] = self.vec_h(motorside_thick + motor_max_h)
self.h_o[4] = self.vec_h(self.tot_h)
# position along axis_d
self.d_o[0] = V0
self.d_o[1] = self.vec_d(wall_thick) # inner wall
# distance to the inner bolts of the motor
self.d_o[2] = self.vec_d(self.motax2wall - self.motor_bolt_sep/2.)
self.d_o[3] = self.vec_d(self.motax2wall) # motor axis
self.d_o[4] = self.vec_d(self.motax2wall + self.motor_bolt_sep/2.)
self.d_o[5] = self.vec_d(self.tot_d)
# vectors from the origin to the points along axis_w:
# these are negative because actually the pos_w indicates a negative
# position along axis_w (this happens when it is symmetrical)
self.w_o[0] = V0
self.w_o[1] = self.vec_w(-self.bolt_wall_sep/2.)
self.w_o[2] = self.vec_w(-self.motor_bolt_sep/2.)
self.w_o[3] = self.vec_w(-self.tot_w/2.)
# calculates the position of the origin, and keeps it in attribute pos_o
self.set_pos_o()
# make the whole box, extra height and depth to cut all the way
# back and down:
shp_box = fcfun.shp_box_dir(box_w=self.tot_w,
box_d=self.tot_d,
box_h=self.tot_h,
fc_axis_h=self.axis_h,
fc_axis_d=self.axis_d,
cw=1, cd=0, ch=0, pos=self.pos_o)
# little chamfer at the corners, if fillet there are some problems
shp_box = fcfun.shp_filletchamfer_dir(shp_box, self.axis_h,
fillet=0,
radius=chmf_r)
shp_box = shp_box.removeSplitter()
# chamfer of the box to make a 'triangular' reinforcement
chmf_reinf_r = min(self.tot_d - wall_thick, self.tot_h-motorside_thick)
# chamfer at the lower point (h=4), and the other end of d (d=5)
shp_box = fcfun.shp_filletchamfer_dirpt(shp_box, self.axis_w,
fc_pt=self.get_pos_dwh(5, 0, 4),
fillet=0,
radius=chmf_reinf_r)
shp_box = shp_box.removeSplitter()
# holes:
holes = []
# the space for the motor
shp_motor = fcfun.shp_box_dir(box_w=self.motor_w + 2 * motor_xtr_space,
box_d=self.tot_d + chmf_r,
box_h=self.tot_h,
fc_axis_h=self.axis_h,
fc_axis_d=self.axis_d,
cw=1, cd=0, ch=0,
# at the inner walls
pos=self.get_pos_dwh(1, 0, 1))
shp_motor = fcfun.shp_filletchamfer_dir(shp_motor, fc_axis=self.axis_h,
fillet=0, radius=chmf_r)
holes.append(shp_motor)
# central circle of the motor
shp_hole = fcfun.shp_cylcenxtr(r=(self.motor_bolt_sep - self.motor_bolt_d)/2.,
h=motorside_thick,
normal=self.axis_h,
ch=0,
xtr_top=1,
xtr_bot=1,
# position of the motor axis, at the top
pos=self.get_pos_d(3))
holes.append(shp_hole)
# motor bolt holes
for pt_d in (2, 4): # points of the motor holes along axis d
for pt_w in (-2, 2): # points of the motor holes along axis_w
shp_hole = fcfun.shp_cylcenxtr(r=self.motor_bolt_d/2.+TOL,
h=motorside_thick,
normal=self.axis_h,
ch=0,
xtr_top=1,
xtr_bot=1,
pos=self.get_pos_dwh(pt_d, pt_w, 0))
holes.append(shp_hole)
# rail holes. To mount the motor holder to a profile or whatever
for pt_w in (-1, 1): # points of the holes to attach the holder
# hole for the rails
if rail == 1:
shp_hole = fcfun.shp_box_dir_xtr(box_w=self.boltwallshank_r_tol * 2.,
box_d=wall_thick,
box_h=motor_max_h - motor_min_h,
fc_axis_h=self.axis_h,
fc_axis_d=self.axis_d,
cw=1, cd=0, ch=0,
xtr_d=1, xtr_nd=1, # to cut
# h:2 the position on top of the rail
pos=self.get_pos_dwh(0, pt_w, 2))
holes.append(shp_hole)
# hole for the ending of the rails (4 semicircles)
for pt_h in (2, 3): # both ends of the rail (along axis_h)
shp_hole = fcfun.shp_cylcenxtr(r=self.boltwallshank_r_tol,
h=wall_thick,
normal=self.axis_d,
ch=0,
xtr_top=1,
xtr_bot=1,
pos=self.get_pos_dwh(0, pt_w, pt_h))
holes.append(shp_hole)
shp_holes = fcfun.fuseshplist(holes)
shp_motorholder = shp_box.cut(shp_holes)
shp_bracket = shp_motorholder.removeSplitter()
self.shp = shp_bracket
super().create_fco()
# Need to set first in (0,0,0) and after that set the real placement.
# This enable to do rotations without any issue
self.fco.Placement.Base = FreeCAD.Vector(0, 0, 0)
self.fco.Placement.Base = self.position
class SimpleEndstopHolder (Obj3D):
"""
Very simple endstop holder to be attached to a alu profile and
that can be adjusted
::
rail_l axis_w
...+.... :
: : :
______________________:
| ________ |
| (________) O |
| ________ |-----> axis_d
| (________) O |
|______________________|
: :
estp_tot_h
pos_d points: axis_h
:
1___2______3_______4___5............. ref_h = 2
| :..........: : : |:..... + h
|__:________:_____:_:_|:.....base_h.: ref_h = 1
pos_w points
axis_w
_____________________ :
| ________ | |:
| (________) ---| 0 |:
1 ________ ---| |:-----> axis_d.
3 (________) ---| 2 |:
4________________|____|:
_____________________ .......
| : : : : |:.....: endstop_nut_dist
| :..........: : :|:
|__:________:____:___:|:.....
if endstop_nut_dist == 0
just take the length+TOL of the nut
_____________________
| : : : : |:
| :..........: : : |:.....
|__:________:____:___:|:.....kcomp.NUT_D934_L[estp_bolt_d]+TOL
Parameters
----------
d_endstop :
Dictionary of the endstop
rail_l : float
Length of the rail, but only the internal length, not counting
the arches to make the semicircles for the bolts
just from semicircle center to the other semicircle center
h : float
Total height, if 0 it will be the minimum height
base_h : float
Height for the base (for the mounting bolts)
holder_out : float
The endstop holder can end a little bit before to avoid
it to be the endstop
mbolt_d : float
Diameter (metric) of the mounting bolts (for the holder
not for the endstop
endstop_nut_dist :
Distance from the top to the endstop nut.
if zero
min_d : int
1: make the endstop axis_d dimension the minimum
axis_d : FreeCAD Vector
Axis along the depth
axis_w : FreeCAD Vector
Axis along the width
axis_h : FreeCAD Vector
Axis along the height
pos_d : int
Reference (zero) of axis_d
* 0 = at the end on the side of the rails
* 1 = at the circle center of one rail (closer to 1)
* 2 = at the circle center of the other rail, closer to endstop
* 3 = at the bolt of the endstop
* 4 = at the end of the endstop (the holder ends before that)
pos_w : int
Reference on axis_w. it is symmetrical, only the negative side
* 0 = centered
* 1 = at one endstop bolt
the other endstop bolt will be on the direction of fc_axis_w
* 2 = at one rail center
the rail center will be on the direction of fc_axis_w
* 3 = at the end
the end will be on the direction of fc_axis_w
pos_h : int
Reference (zero) of axis_h
* 0: at the bottom
* 1: on top
pos : FreeCAD.Vector
Object placement
wfco : int
1 a freecad object will be created
name : str
Name of the freecad object, if created
the rails can be countersunk to make space for the bolts
"""
def __init__(self, d_endstop,
rail_l=15,
base_h=5.,
h=0,
holder_out=2.,
# csunk = 1,
mbolt_d=3.,
endstop_nut_dist=0,
min_d=0,
axis_d=VX,
axis_w=V0,
axis_h=VZ,
pos_d=1,
pos_w=1,
pos_h=1,
pos=V0,
wfco=1,
name='simple_enstop_holder'):
self.pos = FreeCAD.Vector(0, 0, 0)
self.position = pos
self.wfco = wfco
self.name = name
self.base_h = base_h
# normalize the axis
axis_h = DraftVecUtils.scaleTo(axis_h, 1)
axis_d = DraftVecUtils.scaleTo(axis_d, 1)
if axis_w == V0:
axis_w = axis_h.cross(axis_d)
else:
axis_w = DraftVecUtils.scaleTo(axis_w, 1)
axis_h_n = axis_h.negative()
axis_d_n = axis_d.negative()
axis_w_n = axis_w.negative()
self.axis_h = axis_h
self.axis_d = axis_d
self.axis_w = axis_w
self.d0_cen = 0
self.w0_cen = 1 # centered
self.h0_cen = 0
self.pos_d = pos_d
self.pos_w = pos_w
self.pos_h = pos_h
self.pos = pos
Obj3D.__init__(self, axis_d, axis_w, axis_h, name)
# best axis to print, to be pointing up:
self.axis_print = axis_h
self.d_endstop = d_endstop
# :holder_out
# __:________:____________: :..................
# | _________ | | :
# | (_________) ----| 0 | + tot_w
# | _________ ----| |-----> axis_d :
# | (_________) ----| 0 | :
# |__________________|_____|...................:
# : : : : : : :
# : :..rail_l.: : : : :
# : : : : :.: :
# :bolthead_d : : : +estp_bolt_dist
# : : : :
# bolthead_r: :.......:
# : +estp_d
# : :
# :.estp_tot_d:
# :...................._..: :
# tot_d
# The width depend which side is larger
#
# ...... ______________________ ....
# mbolt_head_r ......| ________ | | :
# mbolt_head_d ......| (________) ---| 0 | :
# mbolt_head_d or more ......| ________ ---| | + estp_w or more
# mbolt_head_d ......| (________) ---| 0 | :
# mbolt_head_r ......|________________|_____|....:
# it can have a second hole:
# : :estop_topbolt_dist
# : holder_out
# __:________:______________: :..................
# | _________ | | :
# | (_________) ----| 0 0 | + tot_w
# | _________ ----| |-----> axis_d :
# | (_________) ----| 0 0 | :
# |__________________|_______|...................:
# : :
# mounting bolt data
d_mbolt = kcomp.D912[int(mbolt_d)] # dictionary of the mounting bolt
# print(str(d_mbolt))
mbolt_r_tol = d_mbolt['shank_r_tol']
mbolt_head_r = d_mbolt['head_r']
mbolt_head_r_tol = d_mbolt['head_r_tol']
mbolt_head_l = d_mbolt['head_l']
print(str(mbolt_head_l))
# endstop data. change h->d, d->h, l->w
estp_tot_d = d_endstop['HT']
estp_d = d_endstop['H']
estp_bolt_dist = d_endstop['BOLT_H']
estp_bolt_sep = d_endstop['BOLT_SEP']
estp_bolt_d = d_endstop['BOLT_D'] # diameter, not depth
estp_w = d_endstop['L']
# if there is a second bolt
if 'BOLT_TOP_H' in d_endstop:
estop_2ndbolt_topdist = d_endstop['BOLT_TOP_H']
else:
estop_2ndbolt_topdist = 0
# length of the pins:
estp_pin_d = estp_tot_d - estp_d
if min_d == 0:
tot_d = 3*mbolt_head_r + rail_l + estp_tot_d - holder_out
# nut axis: (nut axis of the hexagon vertex
hex_verx = axis_d
else:
# Taking the minimum length, very tight
tot_d = (3*mbolt_head_r + rail_l + estp_d - holder_out
+ estp_pin_d/2.)
hex_verx = axis_w # less space
# Total width is the largest value from:
# - the width(length) of the endstop
# - the rail width: 2 bolt head diameters, and 2 more: 1 diameter
# between, and a radius to the end
tot_w = max(estp_w, 8 * mbolt_head_r)
if h == 0:
tot_h = base_h + mbolt_head_l
else:
tot_h = base_h + mbolt_head_l
if tot_h > h:
logger.debug('h is smaller that it should, taking: ')
logger.debug(str(tot_h))
else:
tot_h = h
self.tot_h = tot_h
self.tot_w = tot_w
self.tot_d = tot_d
if endstop_nut_dist == 0:
endstop_nut_l = kcomp.NUT_D934_L[estp_bolt_d]+TOL
else:
if endstop_nut_dist > tot_h - kcomp.NUT_D934_L[estp_bolt_d]+TOL:
logger.debug('endstop_nut_dist: ' + str(endstop_nut_dist)
+ ' larger than total height - (nut length+tol): '
+ str(tot_h) + ' - '
+ str(kcomp.NUT_D934_L[estp_bolt_d] + TOL))
endstop_nut_l = kcomp.NUT_D934_L[estp_bolt_d]+TOL
else:
endstop_nut_l = tot_h - endstop_nut_dist
# ------------ DISTANCES ON AXIS_D
# ref_d points: fc_axis_h
# 1___2______3_______4__.5............. ref_h = 2
# | :..........: : : |:..... + h
# |__:________:_____:_:_|:.....base_h.: ref_h = 1
# the end it is not on the holder because of -holder_out
# distance from 1 to 2 in axis_d
# vectors from the origin to the points along axis_d:
self.d_o[0] = V0
self.d_o[1] = self.vec_d(2 * mbolt_head_r)
self.d_o[2] = self.vec_d(2 * mbolt_head_r + rail_l)
self.d_o[3] = self.vec_d((tot_d + holder_out) - (estp_d - estp_bolt_dist))
self.d_o[4] = self.vec_d(tot_d + holder_out)
if estop_2ndbolt_topdist > 0:
self.d_o[5] = self.vec_d(tot_d + holder_out - estop_2ndbolt_topdist)
else:
self.d_o[5] = self.d_o[3]
# vectors from the origin to the points along axis_w:
self.w_o[0] = V0
self.w_o[1] = self.vec_w(estp_bolt_sep/2.)
self.w_o[2] = self.vec_w(tot_w/2. - 2 * mbolt_head_r)
self.w_o[3] = self.vec_w(tot_w/2.)
# vectors from the origin to the points along axis_h:
self.h_o[0] = V0
self.h_o[1] = self.vec_h(tot_h)
# calculates the position of the origin, and keeps it in attribute pos_o
self.set_pos_o()
# TODO: clear this parts when points d_o, w_o, h_o
dis_1_2_d = 2 * mbolt_head_r # d_o[1]
dis_1_3_d = dis_1_2_d + rail_l # d_o[2]
# dis_2_3_d = rail_l
dis_1_5_d = tot_d + holder_out # d_o[4]
dis_1_4_d = dis_1_5_d - (estp_d - estp_bolt_dist) # d_o[3]
# distances to the new point, that is the second bolt hole, if exists
if estop_2ndbolt_topdist > 0:
dis_1_6_d = dis_1_5_d - estop_2ndbolt_topdist
else:
# same as 4: (to avoid errors) it will be the same hole
dis_1_6_d = dis_1_4_d
fc_1_2_d = self.d_o[1]
fc_1_3_d = self.d_o[2]
fc_1_4_d = self.d_o[3]
fc_1_5_d = self.d_o[4]
fc_1_6_d = self.d_o[5]
# vector from the reference point to point 1 on axis_d
if pos_d == 0:
refto_1_d = V0
elif pos_d == 1:
refto_1_d = fc_1_2_d.negative()
elif pos_d == 2:
refto_1_d = fc_1_3_d.negative()
elif pos_d == 3:
refto_1_d = fc_1_4_d.negative()
elif pos_d == 4:
refto_1_d = fc_1_5_d.negative()
elif pos_d == 5:
refto_1_d = fc_1_6_d.negative()
else:
logger.error('wrong reference point')
# ------------ DISTANCES ON AXIS_W
# ref_w points
# fc_axis_w
# _____________________ :
# | ________ | |:
# | (________) ---| 0 |:
# 1 ________ ---| |:-----> fc_axis_d.
# 3 (________) ---| 2 |:
# 4________________|____|:
# distance from 1 to 2 on axis_w
dis_1_2_w = estp_bolt_sep/2.
dis_1_4_w = tot_w/2.
dis_1_3_w = dis_1_4_w - 2 * mbolt_head_r
fc_1_2_w = self.w_o[1]
fc_1_3_w = self.w_o[2]
fc_1_4_w = self.w_o[3]
# vector from the reference point to point 1 on axis_w
if pos_w == 0:
refto_1_w = V0
elif pos_w == 1:
refto_1_w = fc_1_2_w.negative()
elif pos_w == 2:
refto_1_w = fc_1_3_w.negative()
elif pos_w == 3:
refto_1_w = fc_1_4_w.negative()
else:
logger.error('wrong reference point')
# ------------ DISTANCES ON AXIS_H
fc_1_2_h = DraftVecUtils.scale(axis_h, tot_h)
fc_2_1_h = fc_1_2_h.negative()
if pos_h == 0:
refto_2_h = self.h_o[1]
elif pos_h == 1:
refto_2_h = V0
else:
logger.error('wrong reference point')
# Situation of the point on d=1, s=1, h=2
# ____________
# /
# * d1_w1_h2
# /____________
# |
#
# this is an absolute position
# super().get_pos_dwh(pos_d,pos_w,pos_h)
d1_w1_h2_pos = self.pos + refto_1_d + refto_1_w + refto_2_h
d1_w1_h1_pos = d1_w1_h2_pos + fc_2_1_h
# draw the box from this point d1 s1 h2
shp_box = fcfun.shp_box_dir(box_w=tot_w,
box_d=tot_d,
box_h=tot_h,
fc_axis_h=axis_h_n,
fc_axis_d=axis_d,
cw=1, cd=0, ch=0,
pos=d1_w1_h2_pos)
shp_box = fcfun.shp_filletchamfer_dir(shp_box, fc_axis=axis_h,
fillet=1,
radius=2)
holes = []
# holes for the endstop bolts, point: d4 w2 h1
for fc_1_2_wi in [fc_1_2_w, fc_1_2_w.negative()]:
pos_estpbolt = d1_w1_h1_pos + fc_1_4_d + fc_1_2_wi
# hole with the nut hole
shp_estpbolt = fcfun.shp_bolt_dir(r_shank=(estp_bolt_d+TOL)/2.,
l_bolt=tot_h,
# 1 TOL didn't fit
r_head=(kcomp.NUT_D934_D[estp_bolt_d]+2*TOL)/2.,
l_head=endstop_nut_l,
hex_head=1,
xtr_head=1, xtr_shank=1,
fc_normal=axis_h,
fc_verx1=hex_verx,
pos=pos_estpbolt)
holes.append(shp_estpbolt)
# it can have a second hole
if estop_2ndbolt_topdist > 0:
pos_estp_top_bolt = d1_w1_h1_pos + fc_1_6_d + fc_1_2_wi
# hole with the nut hole
shp_estpbolt = fcfun.shp_bolt_dir(r_shank=(estp_bolt_d+TOL)/2.,
l_bolt=tot_h,
# 1 TOL didn't fit
r_head=(kcomp.NUT_D934_D[estp_bolt_d]+2*TOL)/2.,
l_head=endstop_nut_l,
hex_head=1,
xtr_head=1, xtr_shank=1,
fc_normal=axis_h,
fc_verx1=hex_verx,
pos=pos_estp_top_bolt)
holes.append(shp_estpbolt)
# holes for the rails, point d2 w3 h2
for fc_1_3_wi in [fc_1_3_w, fc_1_3_w.negative()]:
# hole for the rails, use the function stadium
rail_pos = d1_w1_h2_pos + fc_1_2_d + fc_1_3_wi
shp_rail_sunk = fcfun.shp_stadium_dir(length=rail_l,
radius=mbolt_head_r_tol,
height=mbolt_head_l,
fc_axis_l=axis_d,
fc_axis_h=axis_h_n,
ref_l=2, # at the center of semicircle
ref_s=1, # symmetrical on the short side
ref_h=2,
xtr_h=0,
xtr_nh=1,
pos=rail_pos)
shp_rail = fcfun.shp_stadium_dir(length=rail_l,
radius=mbolt_r_tol,
height=tot_h,
fc_axis_l=axis_d,
fc_axis_h=axis_h_n,
ref_l=2,
ref_s=1,
ref_h=2,
xtr_h=1,
xtr_nh=0,
pos=rail_pos)
holes.append(shp_rail)
holes.append(shp_rail_sunk)
shp_holes = fcfun.fuseshplist(holes)
shp_holder = shp_box.cut(shp_holes)
self.shp = shp_holder
if wfco == 1:
super().create_fco()
# Need to set first in (0,0,0) and after that set the real placement.
# This enable to do rotations without any issue
self.fco.Placement.Base = FreeCAD.Vector(0, 0, 0)
self.fco.Placement.Base = self.position