forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
assignment_mip.cc
121 lines (109 loc) · 3.49 KB
/
assignment_mip.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// [START import]
#include <vector>
#include "ortools/base/logging.h"
#include "ortools/linear_solver/linear_solver.h"
// [END import]
namespace operations_research {
void AssignmentMip() {
// Data
// [START data_model]
const std::vector<std::vector<double>> costs{
{90, 80, 75, 70}, {35, 85, 55, 65}, {125, 95, 90, 95},
{45, 110, 95, 115}, {50, 100, 90, 100},
};
const int num_workers = costs.size();
const int num_tasks = costs[0].size();
// [END data_model]
// Solver
// [START solver]
// Create the mip solver with the SCIP backend.
std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
if (!solver) {
LOG(WARNING) << "SCIP solver unavailable.";
return;
}
// [END solver]
// Variables
// [START variables]
// x[i][j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
std::vector<std::vector<const MPVariable*>> x(
num_workers, std::vector<const MPVariable*>(num_tasks));
for (int i = 0; i < num_workers; ++i) {
for (int j = 0; j < num_tasks; ++j) {
x[i][j] = solver->MakeIntVar(0, 1, "");
}
}
// [END variables]
// Constraints
// [START constraints]
// Each worker is assigned to at most one task.
for (int i = 0; i < num_workers; ++i) {
LinearExpr worker_sum;
for (int j = 0; j < num_tasks; ++j) {
worker_sum += x[i][j];
}
solver->MakeRowConstraint(worker_sum <= 1.0);
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < num_tasks; ++j) {
LinearExpr task_sum;
for (int i = 0; i < num_workers; ++i) {
task_sum += x[i][j];
}
solver->MakeRowConstraint(task_sum == 1.0);
}
// [END constraints]
// Objective.
// [START objective]
MPObjective* const objective = solver->MutableObjective();
for (int i = 0; i < num_workers; ++i) {
for (int j = 0; j < num_tasks; ++j) {
objective->SetCoefficient(x[i][j], costs[i][j]);
}
}
objective->SetMinimization();
// [END objective]
// Solve
// [START solve]
const MPSolver::ResultStatus result_status = solver->Solve();
// [END solve]
// Print solution.
// [START print_solution]
// Check that the problem has a feasible solution.
if (result_status != MPSolver::OPTIMAL &&
result_status != MPSolver::FEASIBLE) {
LOG(FATAL) << "No solution found.";
}
LOG(INFO) << "Total cost = " << objective->Value() << "\n\n";
for (int i = 0; i < num_workers; ++i) {
for (int j = 0; j < num_tasks; ++j) {
// Test if x[i][j] is 0 or 1 (with tolerance for floating point
// arithmetic).
if (x[i][j]->solution_value() > 0.5) {
LOG(INFO) << "Worker " << i << " assigned to task " << j
<< ". Cost = " << costs[i][j];
}
}
}
// [END print_solution]
}
} // namespace operations_research
int main(int argc, char** argv) {
operations_research::AssignmentMip();
return EXIT_SUCCESS;
}
// [END program]