forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MipVarArray.java
112 lines (102 loc) · 3.82 KB
/
MipVarArray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// MIP example that uses a variable array.
// [START program]
package com.google.ortools.linearsolver.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
// [END import]
// [START program_part1]
/** MIP example with a variable array. */
public class MipVarArray {
// [START data_model]
static class DataModel {
public final double[][] constraintCoeffs = {
{5, 7, 9, 2, 1},
{18, 4, -9, 10, 12},
{4, 7, 3, 8, 5},
{5, 13, 16, 3, -7},
};
public final double[] bounds = {250, 285, 211, 315};
public final double[] objCoeffs = {7, 8, 2, 9, 6};
public final int numVars = 5;
public final int numConstraints = 4;
}
// [END data_model]
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// [START data]
final DataModel data = new DataModel();
// [END data]
// [END program_part1]
// [START solver]
// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
System.out.println("Could not create solver SCIP");
return;
}
// [END solver]
// [START program_part2]
// [START variables]
double infinity = java.lang.Double.POSITIVE_INFINITY;
MPVariable[] x = new MPVariable[data.numVars];
for (int j = 0; j < data.numVars; ++j) {
x[j] = solver.makeIntVar(0.0, infinity, "");
}
System.out.println("Number of variables = " + solver.numVariables());
// [END variables]
// [START constraints]
// Create the constraints.
for (int i = 0; i < data.numConstraints; ++i) {
MPConstraint constraint = solver.makeConstraint(0, data.bounds[i], "");
for (int j = 0; j < data.numVars; ++j) {
constraint.setCoefficient(x[j], data.constraintCoeffs[i][j]);
}
}
System.out.println("Number of constraints = " + solver.numConstraints());
// [END constraints]
// [START objective]
MPObjective objective = solver.objective();
for (int j = 0; j < data.numVars; ++j) {
objective.setCoefficient(x[j], data.objCoeffs[j]);
}
objective.setMaximization();
// [END objective]
// [START solve]
final MPSolver.ResultStatus resultStatus = solver.solve();
// [END solve]
// [START print_solution]
// Check that the problem has an optimal solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL) {
System.out.println("Objective value = " + objective.value());
for (int j = 0; j < data.numVars; ++j) {
System.out.println("x[" + j + "] = " + x[j].solutionValue());
}
System.out.println();
System.out.println("Problem solved in " + solver.wallTime() + " milliseconds");
System.out.println("Problem solved in " + solver.iterations() + " iterations");
System.out.println("Problem solved in " + solver.nodes() + " branch-and-bound nodes");
} else {
System.err.println("The problem does not have an optimal solution.");
}
// [END print_solution]
}
private MipVarArray() {}
}
// [END program_part2]
// [END program]