forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinPackingMip.java
133 lines (123 loc) · 4.59 KB
/
BinPackingMip.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// MIP example that solves a bin packing problem.
// [START program]
package com.google.ortools.linearsolver.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;
// [END import]
/** Bin packing problem. */
public class BinPackingMip {
// [START program_part1]
// [START data_model]
static class DataModel {
public final double[] weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30};
public final int numItems = weights.length;
public final int numBins = weights.length;
public final int binCapacity = 100;
}
// [END data_model]
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// [START data]
final DataModel data = new DataModel();
// [END data]
// [END program_part1]
// [START solver]
// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
System.out.println("Could not create solver SCIP");
return;
}
// [END solver]
// [START program_part2]
// [START variables]
MPVariable[][] x = new MPVariable[data.numItems][data.numBins];
for (int i = 0; i < data.numItems; ++i) {
for (int j = 0; j < data.numBins; ++j) {
x[i][j] = solver.makeIntVar(0, 1, "");
}
}
MPVariable[] y = new MPVariable[data.numBins];
for (int j = 0; j < data.numBins; ++j) {
y[j] = solver.makeIntVar(0, 1, "");
}
// [END variables]
// [START constraints]
double infinity = java.lang.Double.POSITIVE_INFINITY;
for (int i = 0; i < data.numItems; ++i) {
MPConstraint constraint = solver.makeConstraint(1, 1, "");
for (int j = 0; j < data.numBins; ++j) {
constraint.setCoefficient(x[i][j], 1);
}
}
// The bin capacity contraint for bin j is
// sum_i w_i x_ij <= C*y_j
// To define this constraint, first subtract the left side from the right to get
// 0 <= C*y_j - sum_i w_i x_ij
//
// Note: Since sum_i w_i x_ij is positive (and y_j is 0 or 1), the right side must
// be less than or equal to C. But it's not necessary to add this constraint
// because it is forced by the other constraints.
for (int j = 0; j < data.numBins; ++j) {
MPConstraint constraint = solver.makeConstraint(0, infinity, "");
constraint.setCoefficient(y[j], data.binCapacity);
for (int i = 0; i < data.numItems; ++i) {
constraint.setCoefficient(x[i][j], -data.weights[i]);
}
}
// [END constraints]
// [START objective]
MPObjective objective = solver.objective();
for (int j = 0; j < data.numBins; ++j) {
objective.setCoefficient(y[j], 1);
}
objective.setMinimization();
// [END objective]
// [START solve]
final MPSolver.ResultStatus resultStatus = solver.solve();
// [END solve]
// [START print_solution]
// Check that the problem has an optimal solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL) {
System.out.println("Number of bins used: " + objective.value());
double totalWeight = 0;
for (int j = 0; j < data.numBins; ++j) {
if (y[j].solutionValue() == 1) {
System.out.println("\nBin " + j + "\n");
double binWeight = 0;
for (int i = 0; i < data.numItems; ++i) {
if (x[i][j].solutionValue() == 1) {
System.out.println("Item " + i + " - weight: " + data.weights[i]);
binWeight += data.weights[i];
}
}
System.out.println("Packed bin weight: " + binWeight);
totalWeight += binWeight;
}
}
System.out.println("\nTotal packed weight: " + totalWeight);
} else {
System.err.println("The problem does not have an optimal solution.");
}
// [END print_solution]
}
private BinPackingMip() {}
}
// [END program_part2]
// [END program]