forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssignmentMip.cs
118 lines (110 loc) · 3.73 KB
/
AssignmentMip.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// [START program]
// [START import]
using System;
using Google.OrTools.LinearSolver;
// [END import]
public class AssignmentMip
{
static void Main()
{
// Data.
// [START data_model]
int[,] costs = {
{ 90, 80, 75, 70 }, { 35, 85, 55, 65 }, { 125, 95, 90, 95 }, { 45, 110, 95, 115 }, { 50, 100, 90, 100 },
};
int numWorkers = costs.GetLength(0);
int numTasks = costs.GetLength(1);
// [END data_model]
// Model.
// [START model]
Solver solver = Solver.CreateSolver("SCIP");
// [END model]
// Variables.
// [START variables]
// x[i, j] is an array of 0-1 variables, which will be 1
// if worker i is assigned to task j.
Variable[,] x = new Variable[numWorkers, numTasks];
for (int i = 0; i < numWorkers; ++i)
{
for (int j = 0; j < numTasks; ++j)
{
x[i, j] = solver.MakeIntVar(0, 1, $"worker_{i}_task_{j}");
}
}
// [END variables]
// Constraints
// [START constraints]
// Each worker is assigned to at most one task.
for (int i = 0; i < numWorkers; ++i)
{
Constraint constraint = solver.MakeConstraint(0, 1, "");
for (int j = 0; j < numTasks; ++j)
{
constraint.SetCoefficient(x[i, j], 1);
}
}
// Each task is assigned to exactly one worker.
for (int j = 0; j < numTasks; ++j)
{
Constraint constraint = solver.MakeConstraint(1, 1, "");
for (int i = 0; i < numWorkers; ++i)
{
constraint.SetCoefficient(x[i, j], 1);
}
}
// [END constraints]
// Objective
// [START objective]
Objective objective = solver.Objective();
for (int i = 0; i < numWorkers; ++i)
{
for (int j = 0; j < numTasks; ++j)
{
objective.SetCoefficient(x[i, j], costs[i, j]);
}
}
objective.SetMinimization();
// [END objective]
// Solve
// [START solve]
Solver.ResultStatus resultStatus = solver.Solve();
// [END solve]
// Print solution.
// [START print_solution]
// Check that the problem has a feasible solution.
if (resultStatus == Solver.ResultStatus.OPTIMAL || resultStatus == Solver.ResultStatus.FEASIBLE)
{
Console.WriteLine($"Total cost: {solver.Objective().Value()}\n");
for (int i = 0; i < numWorkers; ++i)
{
for (int j = 0; j < numTasks; ++j)
{
// Test if x[i, j] is 0 or 1 (with tolerance for floating point
// arithmetic).
if (x[i, j].SolutionValue() > 0.5)
{
Console.WriteLine($"Worker {i} assigned to task {j}. Cost: {costs[i, j]}");
}
}
}
}
else
{
Console.WriteLine("No solution found.");
}
// [END print_solution]
}
}
// [END program]