forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_validator.cc
904 lines (820 loc) · 35.9 KB
/
model_validator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/linear_solver/model_validator.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/status/status.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/types/optional.h"
#include "ortools/base/accurate_sum.h"
#include "ortools/base/commandlineflags.h"
#include "ortools/linear_solver/linear_solver.pb.h"
#include "ortools/port/file.h"
#include "ortools/port/proto_utils.h"
#include "ortools/util/fp_utils.h"
#include "ortools/util/lazy_mutable_copy.h"
ABSL_FLAG(
double, model_validator_infinity, 1e100,
"Anything above or equal to this magnitude will be considered infinity.");
namespace operations_research {
namespace {
bool IsNanOrAbsGreaterThanOrEqual(double value, double abs_value_threshold) {
return std::isnan(value) || std::abs(value) >= abs_value_threshold;
}
// Internal method to detect errors in bounds. The object passed as parameter
// must have "lower_bound" and "upper_bound" fields.
template <typename BoundedElement>
std::string FindErrorInBounds(const BoundedElement& element,
double abs_value_threshold,
const bool accept_trivially_infeasible_bounds) {
if (std::isnan(element.lower_bound()) || std::isnan(element.upper_bound()) ||
element.lower_bound() >= abs_value_threshold ||
element.upper_bound() <= -abs_value_threshold ||
(!accept_trivially_infeasible_bounds &&
element.lower_bound() > element.upper_bound())) {
return absl::StrFormat("Infeasible bounds: [%f, %f]", element.lower_bound(),
element.upper_bound());
}
return "";
}
// Internal method to detect errors in a single variable.
std::string FindErrorInMPVariable(
const MPVariableProto& variable, double abs_value_threshold,
const bool accept_trivially_infeasible_bounds) {
const std::string bound_error = FindErrorInBounds(
variable, abs_value_threshold, accept_trivially_infeasible_bounds);
if (!bound_error.empty()) return bound_error;
if (!accept_trivially_infeasible_bounds && variable.is_integer() &&
ceil(variable.lower_bound()) > floor(variable.upper_bound())) {
return absl::StrCat(
"Infeasible bounds for integer variable: [", (variable.lower_bound()),
", ", (variable.upper_bound()), "]", " translate to the empty set");
}
if (IsNanOrAbsGreaterThanOrEqual(variable.objective_coefficient(),
abs_value_threshold)) {
return absl::StrCat("Invalid objective_coefficient: ",
(variable.objective_coefficient()));
}
return std::string();
}
// Returns an error message if 'var_indices' contains a duplicate index.
template <typename Iterable>
std::string FindDuplicateVarIndex(const Iterable& var_indices,
std::vector<bool>* var_mask) {
int duplicate_var_index = -1;
for (const int var_index : var_indices) {
if ((*var_mask)[var_index]) duplicate_var_index = var_index;
(*var_mask)[var_index] = true;
}
// Reset "var_mask" to all false, sparsely.
for (const int var_index : var_indices) {
(*var_mask)[var_index] = false;
}
if (duplicate_var_index >= 0) {
return absl::StrCat("var_index #", duplicate_var_index,
" appears several times");
}
return "";
}
// Internal method to detect errors in a single constraint.
// "var_mask" is a vector<bool> whose size is the number of variables in
// the model, and it will be all set to false before and after the call.
std::string FindErrorInMPConstraint(
const MPConstraintProto& constraint, std::vector<bool>* var_mask,
double abs_value_threshold, const bool accept_trivially_infeasible_bounds) {
const std::string bound_error = FindErrorInBounds(
constraint, abs_value_threshold, accept_trivially_infeasible_bounds);
if (!bound_error.empty()) return bound_error;
// TODO(user): clarify explicitly, at least in a comment, whether we want
// to accept empty constraints (i.e. without variables).
const int num_vars_in_model = var_mask->size();
const int num_vars_in_ct = constraint.var_index_size();
const int num_coeffs_in_ct = constraint.coefficient_size();
if (num_vars_in_ct != num_coeffs_in_ct) {
return absl::StrCat("var_index_size() != coefficient_size() (",
num_vars_in_ct, " VS ", num_coeffs_in_ct);
}
for (int i = 0; i < num_vars_in_ct; ++i) {
const int var_index = constraint.var_index(i);
if (var_index >= num_vars_in_model || var_index < 0) {
return absl::StrCat("var_index(", i, ")=", var_index,
" is out of bounds");
}
const double coeff = constraint.coefficient(i);
if (IsNanOrAbsGreaterThanOrEqual(coeff, abs_value_threshold)) {
return absl::StrCat("coefficient(", i, ")=", (coeff), " is invalid");
}
}
const std::string error =
FindDuplicateVarIndex(constraint.var_index(), var_mask);
if (!error.empty()) return error;
// We found no error, all is fine.
return std::string();
}
std::string CroppedConstraintDebugString(const MPConstraintProto& constraint) {
const int kMaxPrintedVars = 10;
MPConstraintProto constraint_light = constraint;
std::string suffix_str;
if (constraint.var_index_size() > kMaxPrintedVars) {
constraint_light.mutable_var_index()->Truncate(kMaxPrintedVars);
absl::StrAppend(&suffix_str,
" (var_index cropped; size=", constraint.var_index_size(),
").");
}
if (constraint.coefficient_size() > kMaxPrintedVars) {
constraint_light.mutable_coefficient()->Truncate(kMaxPrintedVars);
absl::StrAppend(&suffix_str, " (coefficient cropped; size=",
constraint.coefficient_size(), ").");
}
return absl::StrCat("Constraint proto: ",
ProtobufShortDebugString(constraint_light), suffix_str);
}
bool IsBoolean(const MPVariableProto& variable) {
if (variable.lower_bound() < 0) return false;
if (variable.upper_bound() > 1) return false;
return variable.is_integer();
}
std::string FindErrorInMPIndicatorConstraint(
const MPModelProto& model, const MPIndicatorConstraint& indicator,
std::vector<bool>* var_mask, double abs_value_threshold,
bool accept_trivially_infeasible_bounds) {
if (!indicator.has_var_index()) {
return "var_index is required.";
}
const int var_index = indicator.var_index();
if (var_index < 0 || var_index >= model.variable_size()) {
return absl::StrCat("var_index=", var_index, " is out of bounds.");
}
if (!IsBoolean(model.variable(var_index))) {
return absl::StrCat("var_index=", var_index, " is not Boolean.");
}
const int var_value = indicator.var_value();
if (var_value < 0 || var_value > 1) {
return absl::StrCat("var_value=", var_value, " must be 0 or 1.");
}
const MPConstraintProto& constraint = indicator.constraint();
std::string error =
FindErrorInMPConstraint(constraint, var_mask, abs_value_threshold,
accept_trivially_infeasible_bounds);
if (!error.empty()) {
// Constraint protos can be huge, theoretically. So we guard against
// that.
return absl::StrCat(error, " in constraint ",
CroppedConstraintDebugString(constraint));
}
return "";
}
std::string FindErrorInMPSosConstraint(const MPModelProto& model,
const MPSosConstraint& sos,
std::vector<bool>* var_mask,
double abs_value_threshold) {
if (sos.weight_size() != 0 && sos.weight_size() != sos.var_index_size()) {
return "weight_size() > 0 and var_index_size() != weight_size()";
}
for (const int var_index : sos.var_index()) {
if (var_index < 0 || var_index >= model.variable_size()) {
return absl::StrCat("var_index=", var_index, " is out of bounds.");
}
}
for (int i = 0; i < sos.weight_size(); ++i) {
if (IsNanOrAbsGreaterThanOrEqual(sos.weight(i), abs_value_threshold)) {
return absl::StrCat("Invalid weight: ", sos.weight(i));
}
if (i == 0) continue;
if (sos.weight(i - 1) >= sos.weight(i)) {
return "SOS weights must be strictly increasing";
}
}
const std::string error = FindDuplicateVarIndex(sos.var_index(), var_mask);
if (!error.empty()) return error;
return "";
}
std::string FindErrorInMPQuadraticConstraint(
const MPModelProto& model, const MPQuadraticConstraint& qcst,
std::vector<bool>* var_mask, double abs_value_threshold,
bool accept_trivially_infeasible_bounds) {
const int num_vars = model.variable_size();
if (qcst.var_index_size() != qcst.coefficient_size()) {
return "var_index_size() != coefficient_size()";
}
const std::string bound_error = FindErrorInBounds(
qcst, abs_value_threshold, accept_trivially_infeasible_bounds);
if (!bound_error.empty()) return bound_error;
for (int i = 0; i < qcst.var_index_size(); ++i) {
if (qcst.var_index(i) < 0 || qcst.var_index(i) >= num_vars) {
return absl::StrCat("var_index(", i, ")=", qcst.var_index(i),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
if (IsNanOrAbsGreaterThanOrEqual(qcst.coefficient(i),
abs_value_threshold)) {
return absl::StrCat("coefficient(", i, ")=", qcst.coefficient(i),
" is invalid");
}
}
const std::string duplicate_error =
FindDuplicateVarIndex(qcst.var_index(), var_mask);
if (!duplicate_error.empty()) return duplicate_error;
if (qcst.qvar1_index_size() != qcst.qvar2_index_size() ||
qcst.qvar1_index_size() != qcst.qcoefficient_size()) {
return "quadratic indices and coefficients must have the same size";
}
for (int i = 0; i < qcst.qvar1_index_size(); ++i) {
if (qcst.qvar1_index(i) >= num_vars || qcst.qvar1_index(i) < 0) {
return absl::StrCat("qvar1_index(", i, ")=", qcst.qvar1_index(i),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
if (qcst.qvar2_index(i) >= num_vars || qcst.qvar2_index(i) < 0) {
return absl::StrCat("qvar2_index(", i, ")=", qcst.qvar2_index(i),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
if (IsNanOrAbsGreaterThanOrEqual(qcst.qcoefficient(i),
abs_value_threshold)) {
return absl::StrCat("qcoefficient(", i, ")=", qcst.qcoefficient(i),
" is invalid");
}
}
return "";
}
std::string FindErrorInMPAbsConstraint(const MPModelProto& model,
const MPAbsConstraint& abs) {
if (!abs.has_var_index()) {
return "var_index is required.";
}
if (!abs.has_resultant_var_index()) {
return "resultant_var_index is required.";
}
const int num_vars = model.variable_size();
if (abs.var_index() < 0 || abs.var_index() >= num_vars) {
return absl::StrCat("var_index=", abs.var_index(), " is invalid.",
" It must be in [0, ", num_vars, ")");
}
if (abs.resultant_var_index() < 0 || abs.resultant_var_index() >= num_vars) {
return absl::StrCat("var_index=", abs.resultant_var_index(), " is invalid.",
" It must be in [0, ", num_vars, ")");
}
return "";
}
std::string FindErrorInMPAndOrConstraint(const MPModelProto& model,
const MPArrayConstraint& and_or) {
if (and_or.var_index_size() == 0) {
return "var_index cannot be empty.";
}
if (!and_or.has_resultant_var_index()) {
return "resultant_var_index is required.";
}
const int num_vars = model.variable_size();
for (int i = 0; i < and_or.var_index_size(); ++i) {
if (and_or.var_index(i) < 0 || and_or.var_index(i) >= num_vars) {
return absl::StrCat("var_index(", i, ")=", and_or.var_index(i),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
if (!IsBoolean(model.variable(and_or.var_index(i)))) {
return absl::StrCat("var_index=", i, " is not Boolean.");
}
}
if (and_or.resultant_var_index() < 0 ||
and_or.resultant_var_index() >= num_vars) {
return absl::StrCat("resultant_var_index=", and_or.resultant_var_index(),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
if (!IsBoolean(model.variable(and_or.resultant_var_index()))) {
return absl::StrCat("resultant_var_index is not Boolean.");
}
return "";
}
std::string FindErrorInMPMinMaxConstraint(
const MPModelProto& model, const MPArrayWithConstantConstraint& min_max,
double abs_value_threshold) {
if (min_max.var_index_size() == 0) {
return "var_index cannot be empty.";
}
if (!min_max.has_resultant_var_index()) {
return "resultant_var_index is required.";
}
if (IsNanOrAbsGreaterThanOrEqual(min_max.constant(), abs_value_threshold)) {
return absl::StrCat("Invalid constant: ", (min_max.constant()));
}
const int num_vars = model.variable_size();
for (int i = 0; i < min_max.var_index_size(); ++i) {
if (min_max.var_index(i) < 0 || min_max.var_index(i) >= num_vars) {
return absl::StrCat("var_index(", i, ")=", min_max.var_index(i),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
}
if (min_max.resultant_var_index() < 0 ||
min_max.resultant_var_index() >= num_vars) {
return absl::StrCat("resultant_var_index=", min_max.resultant_var_index(),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
return "";
}
std::string FindErrorInQuadraticObjective(const MPQuadraticObjective& qobj,
int num_vars,
double abs_value_threshold) {
if (qobj.qvar1_index_size() != qobj.qvar2_index_size() ||
qobj.qvar1_index_size() != qobj.coefficient_size()) {
return "indices and coefficients must have the same size";
}
for (int i = 0; i < qobj.qvar1_index_size(); ++i) {
if (qobj.qvar1_index(i) >= num_vars || qobj.qvar1_index(i) < 0) {
return absl::StrCat("qvar1_index(", i, ")=", qobj.qvar1_index(i),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
if (qobj.qvar2_index(i) >= num_vars || qobj.qvar2_index(i) < 0) {
return absl::StrCat("qvar2_index(", i, ")=", qobj.qvar2_index(i),
" is invalid.", " It must be in [0, ", num_vars, ")");
}
if (IsNanOrAbsGreaterThanOrEqual(qobj.coefficient(i),
abs_value_threshold)) {
return absl::StrCat("coefficient(", i, ")=", (qobj.coefficient(i)),
" is invalid");
}
}
return "";
}
std::string FindErrorInSolutionHint(
const PartialVariableAssignment& solution_hint, int num_vars,
double abs_value_threshold) {
if (solution_hint.var_index_size() != solution_hint.var_value_size()) {
return absl::StrCat("var_index_size() != var_value_size() [",
solution_hint.var_index_size(), " VS ",
solution_hint.var_value_size());
}
std::vector<bool> var_in_hint(num_vars, false);
for (int i = 0; i < solution_hint.var_index_size(); ++i) {
const int var_index = solution_hint.var_index(i);
if (var_index >= num_vars || var_index < 0) {
return absl::StrCat("var_index(", i, ")=", var_index, " is invalid.",
" It must be in [0, ", num_vars, ")");
}
if (var_in_hint[var_index]) {
return absl::StrCat("Duplicate var_index = ", var_index);
}
var_in_hint[var_index] = true;
if (IsNanOrAbsGreaterThanOrEqual(solution_hint.var_value(i),
abs_value_threshold)) {
return absl::StrCat("var_value(", i, ")=", (solution_hint.var_value(i)),
" is invalid");
}
}
return std::string();
}
} // namespace
std::string FindErrorInMPModelProto(
const MPModelProto& model, double abs_value_threshold,
const bool accept_trivially_infeasible_bounds) {
// NOTE(user): Empty models are considered fine by this function, although
// it is not clear whether MPSolver::Solve() will always respond in the same
// way, depending on the solvers.
if (abs_value_threshold == 0.0) {
abs_value_threshold = absl::GetFlag(FLAGS_model_validator_infinity);
}
if (IsNanOrAbsGreaterThanOrEqual(model.objective_offset(),
abs_value_threshold)) {
return absl::StrCat("Invalid objective_offset: ",
(model.objective_offset()));
}
const int num_vars = model.variable_size();
const int num_cts = model.constraint_size();
// Validate variables.
std::string error;
for (int i = 0; i < num_vars; ++i) {
error = FindErrorInMPVariable(model.variable(i), abs_value_threshold,
accept_trivially_infeasible_bounds);
if (!error.empty()) {
return absl::StrCat("In variable #", i, ": ", error, ". Variable proto: ",
ProtobufShortDebugString(model.variable(i)));
}
}
// Validate constraints.
std::vector<bool> variable_appears(num_vars, false);
for (int i = 0; i < num_cts; ++i) {
const MPConstraintProto& constraint = model.constraint(i);
error = FindErrorInMPConstraint(constraint, &variable_appears,
abs_value_threshold,
accept_trivially_infeasible_bounds);
if (!error.empty()) {
// Constraint protos can be huge, theoretically. So we guard against that.
return absl::StrCat("In constraint #", i, ": ", error, ". ",
CroppedConstraintDebugString(constraint));
}
}
// Validate general constraints.
for (int i = 0; i < model.general_constraint_size(); ++i) {
const MPGeneralConstraintProto& gen_constraint =
model.general_constraint(i);
std::string error;
switch (gen_constraint.general_constraint_case()) {
case MPGeneralConstraintProto::kIndicatorConstraint:
error = FindErrorInMPIndicatorConstraint(
model, gen_constraint.indicator_constraint(), &variable_appears,
abs_value_threshold, accept_trivially_infeasible_bounds);
break;
case MPGeneralConstraintProto::kSosConstraint:
error =
FindErrorInMPSosConstraint(model, gen_constraint.sos_constraint(),
&variable_appears, abs_value_threshold);
break;
case MPGeneralConstraintProto::kQuadraticConstraint:
error = FindErrorInMPQuadraticConstraint(
model, gen_constraint.quadratic_constraint(), &variable_appears,
abs_value_threshold, accept_trivially_infeasible_bounds);
break;
case MPGeneralConstraintProto::kAbsConstraint:
error =
FindErrorInMPAbsConstraint(model, gen_constraint.abs_constraint());
break;
case MPGeneralConstraintProto::kAndConstraint:
error = FindErrorInMPAndOrConstraint(model,
gen_constraint.and_constraint());
break;
case MPGeneralConstraintProto::kOrConstraint:
error =
FindErrorInMPAndOrConstraint(model, gen_constraint.or_constraint());
break;
case MPGeneralConstraintProto::kMinConstraint:
error = FindErrorInMPMinMaxConstraint(
model, gen_constraint.min_constraint(), abs_value_threshold);
break;
case MPGeneralConstraintProto::kMaxConstraint:
error = FindErrorInMPMinMaxConstraint(
model, gen_constraint.max_constraint(), abs_value_threshold);
break;
default:
return absl::StrCat("Unknown general constraint type ",
gen_constraint.general_constraint_case());
}
if (!error.empty()) {
return absl::StrCat("In general constraint #", i, ": ", error);
}
}
// Validate objectives.
if (model.has_quadratic_objective()) {
error = FindErrorInQuadraticObjective(model.quadratic_objective(), num_vars,
abs_value_threshold);
if (!error.empty()) return absl::StrCat("In quadratic_objective: ", error);
}
// Validate the solution hint.
error = FindErrorInSolutionHint(model.solution_hint(), num_vars,
abs_value_threshold);
if (!error.empty()) {
return absl::StrCat("In solution_hint(): ", error);
}
return std::string();
}
absl::optional<LazyMutableCopy<MPModelProto>>
ExtractValidMPModelOrPopulateResponseStatus(const MPModelRequest& request,
MPSolutionResponse* response) {
CHECK(response != nullptr);
if (!request.has_model() && !request.has_model_delta()) {
response->set_status(MPSOLVER_OPTIMAL);
response->set_status_str("Requests without model are considered OPTIMAL");
return absl::nullopt;
}
if (request.has_model() && request.has_model_delta()) {
response->set_status(MPSOLVER_MODEL_INVALID);
response->set_status_str(
"Fields 'model' and 'model_delta' are mutually exclusive");
return absl::nullopt;
}
// Extract the baseline model.
LazyMutableCopy<MPModelProto> model(request.model());
if (request.has_model_delta()) {
// NOTE(user): This library needs to be portable, so we can't include
// ortools/base/file.h; see ../port/file.h.
std::string contents;
const absl::Status file_read_status = PortableFileGetContents(
request.model_delta().baseline_model_file_path(), &contents);
if (!file_read_status.ok()) {
response->set_status(MPSOLVER_MODEL_INVALID);
response->set_status_str(
"Error when reading model_delta.baseline_model_file_path: '" +
file_read_status.ToString());
return absl::nullopt;
}
if (!model.get_mutable()->ParseFromString(contents)) {
response->set_status(MPSOLVER_MODEL_INVALID);
response->set_status_str(
absl::StrFormat("The contents of baseline model file '%s' couldn't "
"be parsed as a raw serialized MPModelProto",
request.model_delta().baseline_model_file_path()));
return absl::nullopt;
}
}
// Validate the baseline model.
std::string error = FindErrorInMPModelProto(model.get());
// If the baseline is valid and we have a model delta, validate the delta,
// then apply it.
if (error.empty() && request.has_model_delta()) {
const MPModelDeltaProto& delta = request.model_delta();
error = FindErrorInMPModelDeltaProto(delta, model.get());
if (error.empty()) ApplyVerifiedMPModelDelta(delta, model.get_mutable());
}
// Deal with errors.
if (!error.empty()) {
if (request.enable_internal_solver_output()) {
LOG(ERROR) << absl::StrCat("Invalid model: ", error);
}
response->set_status(absl::StrContains(error, "Infeasible")
? MPSOLVER_INFEASIBLE
: MPSOLVER_MODEL_INVALID);
response->set_status_str(error);
return absl::nullopt;
}
if (model.get().variable_size() == 0 && model.get().constraint_size() == 0 &&
model.get().general_constraint_size() == 0) {
response->set_status(MPSOLVER_OPTIMAL);
response->set_objective_value(model.get().objective_offset());
response->set_best_objective_bound(response->objective_value());
response->set_status_str(
"Requests without variables and constraints are considered OPTIMAL");
return absl::nullopt;
}
return std::move(model);
}
bool ExtractValidMPModelInPlaceOrPopulateResponseStatus(
MPModelRequest* request, MPSolutionResponse* response) {
absl::optional<LazyMutableCopy<MPModelProto>> lazy_copy =
ExtractValidMPModelOrPopulateResponseStatus(*request, response);
if (!lazy_copy) return false;
if (lazy_copy->was_copied()) {
lazy_copy->get_mutable()->Swap(request->mutable_model());
}
return true;
}
// TODO(user): Add a general FindFeasibilityErrorInSolution() and factor out the
// common code.
std::string FindFeasibilityErrorInSolutionHint(const MPModelProto& model,
double tolerance) {
const int num_vars = model.variable_size();
// First, we validate the solution hint.
std::string error =
FindErrorInSolutionHint(model.solution_hint(), num_vars,
absl::GetFlag(FLAGS_model_validator_infinity));
if (!error.empty()) return absl::StrCat("Invalid solution_hint: ", error);
// Special error message for the empty case.
if (num_vars > 0 && model.solution_hint().var_index_size() == 0) {
return "Empty solution_hint.";
}
// To be feasible, the hint must not be partial.
if (model.solution_hint().var_index_size() != num_vars) {
return absl::StrCat("Partial solution_hint: only ",
model.solution_hint().var_index_size(), " out of the ",
num_vars, " problem variables are set.");
}
// All the values must be exactly in the variable bounds.
std::vector<double> var_value(num_vars);
for (int i = 0; i < model.solution_hint().var_index_size(); ++i) {
const int var_index = model.solution_hint().var_index(i);
const double value = model.solution_hint().var_value(i);
var_value[var_index] = value;
const double lb = model.variable(var_index).lower_bound();
const double ub = model.variable(var_index).upper_bound();
if (!IsSmallerWithinTolerance(value, ub, tolerance) ||
!IsSmallerWithinTolerance(lb, value, tolerance)) {
return absl::StrCat("Variable '", model.variable(var_index).name(),
"' is set to ", (value),
" which is not in the variable bounds [", (lb), ", ",
(ub), "] modulo a tolerance of ", (tolerance), ".");
}
}
// All the constraints must be satisfiable.
for (int cst_index = 0; cst_index < model.constraint_size(); ++cst_index) {
const MPConstraintProto& constraint = model.constraint(cst_index);
AccurateSum<double> activity;
for (int j = 0; j < constraint.var_index_size(); ++j) {
activity.Add(constraint.coefficient(j) *
var_value[constraint.var_index(j)]);
}
const double lb = model.constraint(cst_index).lower_bound();
const double ub = model.constraint(cst_index).upper_bound();
if (!IsSmallerWithinTolerance(activity.Value(), ub, tolerance) ||
!IsSmallerWithinTolerance(lb, activity.Value(), tolerance)) {
return absl::StrCat(
"Constraint '", model.constraint(cst_index).name(), "' has activity ",
(activity.Value()), " which is not in the constraint bounds [", (lb),
", ", (ub), "] modulo a tolerance of ", (tolerance), ".");
}
}
return "";
}
std::string FindErrorInMPModelDeltaProto(const MPModelDeltaProto& delta,
const MPModelProto& model) {
const double abs_value_threshold =
absl::GetFlag(FLAGS_model_validator_infinity);
int num_vars = model.variable_size();
// Validate delta variables.
std::string error;
absl::flat_hash_set<int> new_var_indices;
int max_var_index = num_vars - 1;
MPVariableProto tmp_var_proto;
for (const auto& pair : delta.variable_overrides()) {
const int var_index = pair.first;
const MPVariableProto& var_override_proto = pair.second;
if (var_index < 0) {
error = "Invalid key";
} else if (var_index >= num_vars) {
max_var_index = std::max(max_var_index, var_index);
new_var_indices.insert(var_index);
error =
FindErrorInMPVariable(var_override_proto, abs_value_threshold,
/*accept_trivially_infeasible_bounds=*/false);
} else {
tmp_var_proto = model.variable(var_index);
// NOTE(user): It is OK for the override proto to be empty, i.e. be a
// non-override.
tmp_var_proto.MergeFrom(var_override_proto);
error =
FindErrorInMPVariable(tmp_var_proto, abs_value_threshold,
/*accept_trivially_infeasible_bounds=*/false);
}
if (!error.empty()) {
return absl::StrFormat(
"variable_overrides with key (eg. var index) = %d: %s", var_index,
error);
}
}
if (max_var_index != num_vars + new_var_indices.size() - 1) {
return absl::StrFormat(
"The added and existing variable indices do not form a dense integer "
"interval: oldmax=%d, max=%d, num added=%d",
num_vars - 1, max_var_index, new_var_indices.size());
}
// Now we "officially" add the new variables to "num_vars".
num_vars += new_var_indices.size();
// Validate delta constraints. We can avoid going over the full
// var_index/coefficient of the original constraint, since the overrides are
// self-sufficient (i.e. the override var_index/coefficients are valid iff
// they would be valid in a standalone, new constraint). So we use a partial
// proto merger to avoid those in the baseline constraint.
std::vector<bool> variable_appears(num_vars, false);
MPConstraintProto tmp_constraint_proto;
const int num_constraints = model.constraint_size();
absl::flat_hash_set<int> new_ct_indices;
int max_ct_index = num_constraints - 1;
for (const auto& pair : delta.constraint_overrides()) {
const int ct_index = pair.first;
const MPConstraintProto& constraint_override_proto = pair.second;
if (ct_index < 0) {
error = "Invalid constraint index";
} else if (ct_index >= num_constraints) {
max_ct_index = std::max(max_ct_index, ct_index);
new_ct_indices.insert(ct_index);
error = FindErrorInMPConstraint(
constraint_override_proto, &variable_appears, abs_value_threshold,
/*accept_trivially_infeasible_bounds=*/false);
} else {
// NOTE(user): We don't need to do the merging of var_index/coefficient:
// that part of the merged constraint will be valid iff the override is
// valid as a standalone var_index/coefficient map.
// So we simply validate a reduced version of the actual "merged"
// constraint, by removing the var_index/coefficient of the baseline.
// Benefit: the complexity is O(|constraint override|) even if the
// baseline constraint was huge.
tmp_constraint_proto.Clear();
MergeMPConstraintProtoExceptTerms(model.constraint(ct_index),
&tmp_constraint_proto);
tmp_constraint_proto.MergeFrom(constraint_override_proto);
error = FindErrorInMPConstraint(
tmp_constraint_proto, &variable_appears, abs_value_threshold,
/*accept_trivially_infeasible_bounds=*/false);
}
if (!error.empty()) {
return absl::StrFormat(
"constraint_overrides with key (eg. constraint index) = %d: %s",
ct_index, error);
}
}
if (max_ct_index != num_constraints + new_ct_indices.size() - 1) {
return absl::StrFormat(
"The added and existing constraint indices do not form a dense integer "
"interval: oldmax=%d, max=%d, num added=%d",
num_constraints - 1, max_ct_index, new_ct_indices.size());
}
return "";
}
void MergeMPConstraintProtoExceptTerms(const MPConstraintProto& from,
MPConstraintProto* to) {
#define COPY_FIELD_IF_PRESENT(field) \
if (from.has_##field()) to->set_##field(from.field())
COPY_FIELD_IF_PRESENT(lower_bound);
COPY_FIELD_IF_PRESENT(upper_bound);
COPY_FIELD_IF_PRESENT(name);
COPY_FIELD_IF_PRESENT(is_lazy);
#undef COPY_FIELD_IF_PRESENT
}
namespace {
void PruneZeroTermsInMpConstraint(MPConstraintProto* ct) {
// Optimize the fast path (when no term is pruned) by doing a first quick scan
// until the first zero.
int first_zero = 0;
while (first_zero < ct->var_index_size() &&
ct->coefficient(first_zero) != 0.0) {
++first_zero;
}
int num_kept = first_zero;
for (int i = first_zero; i < ct->var_index_size(); ++i) {
if (ct->coefficient(i) == 0.0) continue;
if (num_kept != i) {
ct->set_var_index(num_kept, ct->var_index(i));
ct->set_coefficient(num_kept, ct->coefficient(i));
}
++num_kept;
}
ct->mutable_var_index()->Truncate(num_kept);
ct->mutable_coefficient()->Truncate(num_kept);
}
// Adds default entries to a repeated message field until it has the wanted
// size. We don't use google::protobuf::util::Resize() because it's not
// compatible with 'light' protos.
template <class T>
void ExtendRepeatedPtrFieldToSize(const int size, T* repeated_messages) {
DCHECK_GE(size, repeated_messages->size());
while (repeated_messages->size() < size) repeated_messages->Add();
}
} // namespace
void ApplyVerifiedMPModelDelta(const MPModelDeltaProto& delta,
MPModelProto* model) {
// Apply the delta to the variables: first, resize the variable array.
int max_var_index = -1;
for (const auto& p : delta.variable_overrides()) {
max_var_index = std::max(max_var_index, p.first);
}
if (max_var_index >= model->variable_size()) {
ExtendRepeatedPtrFieldToSize(max_var_index + 1, model->mutable_variable());
}
// Then, apply the variable overrides.
for (const auto& p : delta.variable_overrides()) {
model->mutable_variable(p.first)->MergeFrom(p.second);
}
// Apply the delta to the constraints: first, resize the constraint array.
int max_ct_index = -1;
for (const auto& p : delta.constraint_overrides()) {
max_ct_index = std::max(max_ct_index, p.first);
}
const int old_num_constraints = model->constraint_size();
if (max_ct_index >= old_num_constraints) {
ExtendRepeatedPtrFieldToSize(max_ct_index + 1, model->mutable_constraint());
}
// Then, apply the constraint overrides.
for (const auto& p : delta.constraint_overrides()) {
const MPConstraintProto& override_ct = p.second;
MPConstraintProto* baseline = model->mutable_constraint(p.first);
// Fast path for added constraints.
if (p.first >= old_num_constraints) {
*baseline = override_ct;
continue;
}
MergeMPConstraintProtoExceptTerms(/*from=*/override_ct, /*to=*/baseline);
// Special case: the override is neutralized.
if (override_ct.has_lower_bound() &&
override_ct.lower_bound() <=
-absl::GetFlag(FLAGS_model_validator_infinity) &&
override_ct.has_upper_bound() &&
override_ct.upper_bound() >=
absl::GetFlag(FLAGS_model_validator_infinity)) {
baseline->clear_var_index();
baseline->clear_coefficient();
continue;
}
// Otherwise we have to apply the term overrides. We can't do that in less
// than O(|baseline| + |override_ct|) because the baseline doesn't have a
// lookup-friendly data structure. But we still try to do it as efficiently
// as possible. In particular, we only use O(|override_ct|) extra memory.
absl::flat_hash_map<int, double> term_overrides;
term_overrides.reserve(override_ct.var_index_size());
for (int i = 0; i < override_ct.var_index_size(); ++i) {
term_overrides[override_ct.var_index(i)] = override_ct.coefficient(i);
}
for (int i = 0; i < baseline->var_index_size(); ++i) {
auto it = term_overrides.find(baseline->var_index(i));
if (it == term_overrides.end()) continue;
baseline->set_coefficient(i, it->second);
it->second = 0.0; // To mark this term override as 'has been applied'.
}
PruneZeroTermsInMpConstraint(baseline);
// Add the term overrides which haven't been used: those are added terms.
for (const auto& p : term_overrides) {
if (p.second != 0.0) {
baseline->add_var_index(p.first);
baseline->add_coefficient(p.second);
}
}
}
}
} // namespace operations_research