forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathissue1231.py
78 lines (60 loc) · 2.34 KB
/
issue1231.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright 2010-2021 Google
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Cryptarithmetic puzzle
First attempt to solve equation CP + IS + FUN = TRUE
where each letter represents a unique digit.
This problem has 72 different solutions in base 10.
"""
from ortools.constraint_solver import pywrapcp
from os import abort
def CPIsFun():
# Constraint programming engine
solver = pywrapcp.Solver('CP is fun!');
kBase = 10
# Decision variables.
digits = list(range(0, kBase))
digits_without_zero = list(range(1, kBase))
c = solver.IntVar(digits_without_zero, 'C');
p = solver.IntVar(digits, 'P');
i = solver.IntVar(digits_without_zero, 'I');
s = solver.IntVar(digits, 'S');
f = solver.IntVar(digits_without_zero, 'F');
u = solver.IntVar(digits, 'U');
n = solver.IntVar(digits, 'N');
t = solver.IntVar(digits_without_zero, 'T');
r = solver.IntVar(digits, 'R');
e = solver.IntVar(digits, 'E');
# We need to group variables in a list to use the constraint AllDifferent.
letters = [c, p, i, s, f, u, n, t, r, e]
# Verify that we have enough digits.
assert kBase >= len(letters)
# Define constraints.
solver.Add(solver.AllDifferent(letters))
# CP + IS + FUN = TRUE
solver.Add (p + s + n + kBase * (c + i + u) + kBase * kBase * f ==
e + kBase * u + kBase * kBase * r + kBase * kBase * kBase * t)
db = solver.Phase(letters, solver.INT_VAR_DEFAULT,
solver.INT_VALUE_DEFAULT)
solver.NewSearch(db)
while solver.NextSolution():
print(letters)
# Is CP + IS + FUN = TRUE?
assert (kBase*c.Value() + p.Value() + kBase*i.Value() + s.Value() +
kBase*kBase*f.Value() + kBase*u.Value() + n.Value() ==
kBase*kBase*kBase*t.Value() + kBase*kBase*r.Value() +
kBase*u.Value() + e.Value())
solver.EndSearch()
return
if __name__ == '__main__':
CPIsFun()