-
Notifications
You must be signed in to change notification settings - Fork 5
/
convert_to_onnx.py
28 lines (19 loc) · 961 Bytes
/
convert_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import argparse
import torch
from models.with_mobilenet import PoseEstimationWithMobileNet
from modules.load_state import load_state
def convert_to_onnx(net, output_name):
input = torch.randn(1, 3, 256, 448)
input_names = ['data']
output_names = ['features', 'heatmaps', 'pafs']
torch.onnx.export(net, input, output_name, verbose=True, input_names=input_names, output_names=output_names)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint-path', type=str, required=True, help='path to the checkpoint')
parser.add_argument('--output-name', type=str, default='human-pose-estimation-3d.onnx',
help='name of output model in ONNX format')
args = parser.parse_args()
net = PoseEstimationWithMobileNet(is_convertible_by_mo=True)
checkpoint = torch.load(args.checkpoint_path)
load_state(net, checkpoint)
convert_to_onnx(net, args.output_name)