-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.bbl
145 lines (118 loc) · 5.16 KB
/
main.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
\begin{thebibliography}{}
\bibitem[Arnold, 1992]{Arnold}
Arnold, V. (1992).
\newblock {\em Ordinary Differential Equations}.
\newblock Springer.
\bibitem[Breunung and Haller, 2019]{BreunningHaller}
Breunung, T. and Haller, G. (2019).
\newblock When does a periodic response exist in a periodic forced
multi-degree-of-freedom mechanical system?
\newblock {\em Nonlinear Dynamics}, 98:1761--1780.
\bibitem[Burns et~al., 1999]{Burns1999}
Burns, T.~J., Davis, R.~W., and Moore, E.~F. (1999).
\newblock A perturbation study of particle dynamics in a plane wake flow.
\newblock {\em Journal of Fluid Mechanics}, 384:1 -- 26.
\bibitem[Chicone, 1999]{Chicone}
Chicone, C. (1999).
\newblock {\em Ordinary Differential Equations with Applications}.
\newblock Springer.
\bibitem[Fenichel, 1979]{Fenichel1979}
Fenichel, N. (1979).
\newblock Geometric singular perturbation theory for ordinary differential
equations.
\newblock {\em Journal of Differential Equations}, 31:53--98.
\bibitem[Guckenheimer and Holmes, 1990]{GuckenheimerHolmes}
Guckenheimer, J. and Holmes, P. (1990).
\newblock {\em Nonlinear Oscillations, Dynamical Systems, and Bifurcations of
Vector Fields}.
\newblock Springer, New York, 3. print., rev. and corr. edition.
\bibitem[Haken, 1977]{Haken1977}
Haken, H. (1977).
\newblock {\em Synergetics: an Introduction, Nonequilibrium Phase Transitions
and Self-organization in Physics, Chemistry, and Biology}.
\newblock Springer Berline, Heidelberg.
\bibitem[Haller, 2001]{Haller2001}
Haller, G. (2001).
\newblock Distinguished material surfaces and coherent structures in
three-dimensional fluid flows.
\newblock {\em Physica D: Nonlinear Phenomena}, 149(4):248--277.
\bibitem[Haller and Ponsioen, 2016]{Ponsioen2016}
Haller, G. and Ponsioen, S. (2016).
\newblock Nonlinear normal modes and spectral submanifolds: existence,
uniqueness and use in model reduction.
\newblock {\em Nonlinear Dynamics}, 86:1493-- 1534.
\bibitem[Haller and Sapsis, 2008]{Sapsis2008}
Haller, G. and Sapsis, T. (2008).
\newblock Where do inertial particles go in fluid flows?
\newblock {\em Physica D: Nonlinear Phenomena}, 237(5):573--583.
\bibitem[Kutz et~al., 2015]{Kutz2016}
Kutz, J.~N., Fu, X., and Brunton, S.~L. (2015).
\newblock Multi-resolution dynamic mode decomposition.
\newblock {\em SIAM Journal on Applied Dynamical Systems}.
\bibitem[Lotka, 1925]{Lotka1925}
Lotka, A. (1925).
\newblock {\em Elements of Physical Biology}.
\newblock Williams and Wilkins Company.
\bibitem[Maxey and Riley, 1983]{Maxey1983}
Maxey, M.~R. and Riley, J.~J. (1983).
\newblock Equation of motion for a small rigid sphere in a nonuniform flow.
\newblock {\em The Physics of Fluids}, 26(4):883--889.
\bibitem[Milnor, 1965]{Milnor1965}
Milnor, J. (1965).
\newblock {\em Topology from the differentiable viewpoint}.
\newblock University Press of Virginia.
\bibitem[Palis, 1967]{PalisPhd}
Palis, J. (1967).
\newblock {\em On Morse-Smale Diffeomorphisms}.
\newblock PhD thesis, UC Berkely.
\bibitem[Palis, 1969]{Palis}
Palis, J. (1969).
\newblock On morse-smale dynamical systems.
\newblock {\em Topology}, 8:385--404.
\bibitem[Rouche et~al., 1977]{LiapunovDirect}
Rouche, N., Habets, P., and Laloy, M. (1977).
\newblock {\em Stability Theory by Liapunov’s Direct Method}.
\newblock Springer New York, NY.
\bibitem[Saari and Urenko, 1984]{SaariUrenko}
Saari, D.~G. and Urenko, J.~B. (1984).
\newblock Newton's method, circle maps, and chaotic motion.
\newblock {\em The American Mathematical Monthly}, 91(1):3--17.
\bibitem[Sapsis and Haller, 2010]{Sapsis2010}
Sapsis, T. and Haller, G. (2010).
\newblock Clustering criterion for inertial particles in two-dimensional
time-periodic and three-dimensional steady flows.
\newblock {\em Chaos: An Interdisciplinary Journal of Nonlinear Science},
20(1):017515.
\bibitem[Schmid, 2010]{Schmid2010}
Schmid, P. (2010).
\newblock Dynamic mode decomposition of numerical and experimental data.
\newblock {\em Journal of Fluid Mechanics}, 656:5 -- 28.
\bibitem[Strogatz, 2000]{Strogatz}
Strogatz, S. (2000).
\newblock {\em Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry and Engineering}.
\newblock Studies in nonlinearity. Westview.
\bibitem[Sun et~al., 2016]{Sun2016}
Sun, P., Colagrossi, A., Marrone, S., and Zhang, A. (2016).
\newblock Detection of lagrangian coherent structures in the sph framework.
\newblock {\em Computer Methods in Applied Mechanics and Engineering},
305:849--868.
\bibitem[Verhulst, 1989]{Verhulst}
Verhulst, F. (1989).
\newblock {\em Nonlinear Differential Equations and Dynamical Systems}.
\newblock Springer.
\bibitem[Volterra, 1926]{Volterra1926}
Volterra, V. (1926).
\newblock Variazioni e fluttuazioni del numero d'individui in specie animali
conviventi.
\newblock {\em Memor. Accad. Lincei.}, 6:31--113.
\bibitem[Wiggins, 1994]{Wiggins1994}
Wiggins, S. (1994).
\newblock {\em Normally Hyperbolic Invariant Manifolds in Dynamical Systems}.
\newblock Springer New York, NY.
\bibitem[Williams et~al., 2015]{Williams2015}
Williams, M., Kevrekidis, I., and Rowley, C. (2015).
\newblock A data-driven approximation of the koopman operator: Extending
dynamic mode decomposition.
\newblock {\em Journal of Nonlinear Science}, pages 1307--1346.
\end{thebibliography}