Skip to content

Latest commit

 

History

History
41 lines (28 loc) · 1.18 KB

README.md

File metadata and controls

41 lines (28 loc) · 1.18 KB

How to use

For inference using a pre-trained model follow this steps:

  1. Put all your images under a folder (symlinks are allowed). For example data

  2. Download the pre-trained model (see available model bellow), and it's respective config file.

  3. Run P2PaLA:

python P2PaLA.py --config <path_to_config_file> --prev_model <path_to_model> --prod_data <pointer_to_your_images>

Note: This command will force to use GPU, if you want to use CPU just add --gpu -1

  1. Example: Make sure you have an input folder in your main directory, also that you have downloaded the config and the pretrained model.
python P2PaLA.py --config config_ALAR_min_model_17_12_18_inference.txt --prev_model ALAR_min_model_17_12_18.pth --prod_data ./input

If you want to use CPU just add --gpu -1

Available models

Baselines only

  • ALAR:

    • model:

    wget --no-check-certificate https://www.prhlt.upv.es/~lquirosd/P2PaLA/ALAR_min_model_17_12_18.pth

    • config:

    wget --no-check-certificate https://www.prhlt.upv.es/~lquirosd/P2PaLA/config_ALAR_min_model_17_12_18_inference.txt

Baselines and Zones

WIP

Zones only

WIP

Tables

WIP