generated from TomographicImaging/CIL-HTC2022-Algo1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
473 lines (366 loc) · 15.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright 2022 United Kingdom Research and Innovation
# Copyright 2022 Technical University of Denmark
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from mat_reader import loadmat
import numpy as np
from cil.framework import AcquisitionGeometry, AcquisitionData
from cil.plugins.tigre import ProjectionOperator
from cil.optimisation.algorithms import FISTA, PDHG
from cil.optimisation.functions import LeastSquares, TotalVariation, L1Norm, MixedL21Norm, L2NormSquared, IndicatorBox, BlockFunction
from cil.optimisation.operators import GradientOperator, IdentityOperator, BlockOperator, FiniteDifferenceOperator
from cil.processors import Padder
from cil.processors import MaskGenerator
import matplotlib.pyplot as plt
import skimage
from skimage.filters import threshold_otsu, threshold_multiotsu
from PIL import Image
import numpy as np
import os
def load_htc2022data(filename, dataset_name='CtDataFull'):
#read in matlab file
mat = loadmat(filename)
scan_parameters= mat[dataset_name]['parameters']
#read important parameters
source_center = scan_parameters['distanceSourceOrigin']
source_detector = scan_parameters['distanceSourceDetector']
pixel_size = scan_parameters['pixelSizePost'] #data is binned
num_dets = scan_parameters['numDetectorsPost']
angles = scan_parameters['angles']
#create CIL data from meta data
ag = AcquisitionGeometry.create_Cone2D(source_position=[0,-source_center],
detector_position=[0,source_detector-source_center])\
.set_panel(num_pixels=num_dets, pixel_size=pixel_size)\
.set_angles(angles=-angles, angle_unit='degree')
#%% read data
scan_sinogram = mat[dataset_name]['sinogram'].astype('float32')
#create CIL data
data = AcquisitionData(np.squeeze(scan_sinogram), geometry=ag)
return data
def apply_circular_mask(image_data, radius_percentage=1, out=None):
ig = image_data.geometry
x_pos = ig.dimension_labels.index('horizontal_x')
y_pos = ig.dimension_labels.index('horizontal_y')
pix_x = ig.shape[x_pos]
pix_y = ig.shape[y_pos]
radius=radius_percentage * int(min(pix_x, pix_y)/2.)
center = [int(pix_x/2.), int(pix_y/2.)]
Y, X = np.ogrid[:pix_y, :pix_x]
dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2)
mask_arr = dist_from_center <= radius
labels_orig = ig.dimension_labels
labels = list(labels_orig)
if out == None:
return_data = image_data.copy()
else:
return_data = out
labels.remove('horizontal_y')
labels.remove('horizontal_x')
labels.append('horizontal_y')
labels.append('horizontal_x')
return_data.reorder(labels)
np.multiply(return_data.array, mask_arr, out=return_data.array)
return_data.reorder(labels_orig)
return return_data
def generate_reduced_data(data, astart, arange):
idx = [*range(2*astart, 2*(astart+arange)+1)]
data_array = data.as_array()[idx,:]
ag_reduced = data.geometry.copy()
ag_reduced.set_angles(ag_reduced.angles[idx])
data_reduced = AcquisitionData(data_array, geometry=ag_reduced)
return data_reduced
def TValg(data, alpha, lower=0.0, upper=np.inf, imsize=None):
ig = data.geometry.get_ImageGeometry()
if imsize is not None:
ig.voxel_num_x = imsize
ig.voxel_num_y = imsize
A = ProjectionOperator(ig, data.geometry)
F = LeastSquares(A, data)
G = alpha*TotalVariation(lower=lower, upper=upper)
alg_tv = FISTA(initial=ig.allocate(0.0), f=F, g=G, max_iteration=1000, update_objective_interval=10)
return alg_tv
def TV_iso_and_aniso_PDHG(preproc_data, fidelity_weight=10,
iso_weight = 1.0,
aniso_weight_y = 1.0,
aniso_weight_x = 1.0, lower = 0, upper = 0.04, init_recon = None,
max_iterations = 1000, update_objective_interval = 100, verbose=1, imsize=None):
# image geometry
ig = preproc_data.geometry.get_ImageGeometry()
if imsize is not None:
ig.voxel_num_x = imsize
ig.voxel_num_y = imsize
if init_recon is None:
init_recon = ig.allocate()
# FinDiff operators in y, x (numpy)
DY = FiniteDifferenceOperator(ig, direction=0)
DX = FiniteDifferenceOperator(ig, direction=1)
# GradOperar with c backend
Grad = GradientOperator(ig)
# PDHG operator
A = ProjectionOperator(ig, preproc_data.geometry)
K = BlockOperator(A, DY, DX, Grad)
# PDHG composite part
f1 = (fidelity_weight/2)*L2NormSquared(b=preproc_data)
f2 = aniso_weight_y*L1Norm() #0.05
f3 = aniso_weight_x*L1Norm()
f4 = -iso_weight * MixedL21Norm()
F = BlockFunction(f1, f2, f3, f4)
# PDHG no composite part
G = IndicatorBox(lower=lower, upper=upper)
normK = K.norm()
sigma = 0.1
tau = 1./(sigma*normK**2)
pdhg_anis_iso = PDHG(initial=init_recon,f=F, g=G, operator=K,
update_objective_interval=update_objective_interval,
sigma=sigma, tau=tau,
max_iteration=max_iterations)
pdhg_anis_iso.run(verbose=verbose)
return pdhg_anis_iso
def correct_normalisation(data):
data_intensity = -data
data_intensity.exp(out = data_intensity)
counts, bins = np.histogram(data_intensity.as_array().ravel(),bins=256,range=(0.9,1.1))
index = np.argmax(counts)
peak_value = bins[index]
data_intensity_fix = data_intensity/peak_value #renormalise to set peak to 1
data_new = data_intensity_fix.log()
data_new = -data_new
return data_new
def apply_BHC(data):
#these coefficients are generated from the full disk data
coefficients = np.array([ 0.00130522, 0.9995882, -0.01443113, 0.07282656])
data_corrected = data.geometry.allocate(None)
data_corrected.fill(np.polynomial.polynomial.polyval(data.array, coefficients))
return data_corrected
def pad_zeros(data):
# Recon image 512x512, so diagonal is sqrt(2)*512=724 pixels.
# Data is 560 pixels wide, ie less than diagonal, so will cause a non-zero background outside the field of view ring.
# Padding by 86 on each side make data 560+2*86=732 wide, so will remove ring.
return Padder(pad_width=86)(data)
def myhist(data, num_bins=256):
counts, bins = np.histogram(data.as_array().ravel(),bins=num_bins)
plt.hist(bins[:-1], bins, weights=counts)
plt.show()
def segment(data, thrval=0.018):
mask_generator = MaskGenerator.threshold(thrval, None)
return mask_generator(data)
def loadImg(imgFile):
# load image and convert to grayscale array
img = skimage.io.imread(imgFile)
#img = img[:, :, :3] # removes 4th channel if present (alpha channel)
#img = skimage.color.rgb2gray(img) # converts to grayscale
# forces binary image
threshold = 0.5
img[img > threshold] = 1.0
img[img <= threshold] = 0.0
# convert to bool
img = img.astype(bool)
# fig = skimage.io.imshow(img)
# plt.show()
return img
def calcScoreArray(Ir, It):
#Ir = loadImg(reconImgFile)
#It = loadImg(groundtruthImgFile)
AND = lambda x, y: np.logical_and(x, y)
NOT = lambda x: np.logical_not(x)
# confusion matrix
TP = float(len(np.where(AND(It, Ir))[0]))
TN = float(len(np.where(AND(NOT(It), NOT(Ir)))[0]))
FP = float(len(np.where(AND(NOT(It), Ir))[0]))
FN = float(len(np.where(AND(It, NOT(Ir)))[0]))
cmat = np.array([[TP, FN], [FP, TN]])
# Matthews correlation coefficient (MCC)
numerator = TP * TN - FP * FN
denominator = np.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))
if denominator == 0:
score = 0
else:
score = numerator / denominator
return score
def flipud_unpack(data):
return np.flipud(data.as_array())
def apply_global_threshold(data):
data_segmented = data.copy()
data_segmented.array[data_segmented.array<0]=0
thresh = threshold_otsu(data_segmented.array)
data_segmented.array[data.array < thresh] = 0
data_segmented.array[data.array > thresh] = 1
return data_segmented
def write_data_to_png(data, input_file, output_folder):
'''
Writes 'data' to a 24-bit PNG with the same name
as the 'input_file', in the 'output_folder'
'''
output_name = os.path.splitext(os.path.basename(input_file))[0]
output_path = os.path.join(output_folder, output_name) + '.png'
# We require a 24-bit PNG (RGB)
# Therefore we must convert to unit8 (8 bits per colour)
# And then convert to RGB:
data = data* 255
data = np.array(data, dtype=np.uint8)
data_rgb = Image.fromarray(data).convert("RGB")
data_rgb.save(output_path, 'png') #
# Note, to check we have the write format, in the command line (linux)
# type:
# `file <png name>`
# then you should see the output:
# `PNG image data, 512 x 512, 8-bit/color RGB`
############# Utils to create the circular mask #################
import numba
from skimage.filters import threshold_otsu
from cil.recon import FDK
from cil.optimisation.operators import GradientOperator
def fit_circle(x,y):
'''Circle fitting by linear and nonlinear least squares in 2D
Parameters
----------
x : array with the x coordinates of the data
y : array with the y coordinates of the data. It has to have the
same length of x.
Returns
-------
ndarray with:
r : radius of the circle
x0 : x coordinate of the centre
y0 : y coordinate of the centre
References
----------
Journal of Optimisation Theory and Applications
https://link.springer.com/article/10.1007/BF00939613
From https://core.ac.uk/download/pdf/35472611.pdf
'''
if len(x) != len(y):
raise ValueError('X and Y array are of different length')
data = np.vstack((x,y))
B = np.vstack((data, np.ones(len(x))))
d = np.sum(np.multiply(data,data), axis=0)
res = np.linalg.lstsq(B.T,d, rcond=None)
y = res[0]
x0 = y[0] * 0.5
y0 = y[1] * 0.5
r = np.sqrt(x0**2 + y0**2 + y[2])
return np.asarray([r,x0,y0])
@numba.jit(nopython=True)
def fill_circular_mask(rc, array, value, N, M, delta=np.sqrt(1/np.pi)):
'''Fills an array with a circular mask
Parameters:
-----------
rc : ndarray with radius, coordinate x and coordinate y
array: ndarray where you want to add the mask
value: int, value you want to set to the mask
N,M: int, x and y dimensions of the array
delta: float, a value < 1 which controls a slack in the measurement of the distance of each pixel with the centre of the circle.
By default it is the radius of a circle of area 1
Example:
--------
from cil.framework import ImageGeometry
from cil.utilities.display import show2D
ig = ImageGeometry(20,20)
test = ig.allocate(0)
d0 = 0
d1 = np.sqrt(1/np.pi)
d2 = np.sqrt(2)/2
d = [d0,d1,d2]
t = []
for delta in d:
fill_circular_mask(np.asarray([5,10,10]), test.array, 1, * test.shape, delta)
t.append( test.copy() )
show2D(t, title=d, num_cols=len(t))
'''
for i in numba.prange(M):
for j in numba.prange(N):
d = np.sqrt( (i-rc[1]+0.5)*(i-rc[1]+0.5) + (j-rc[2]+0.5)*(j-rc[2]+0.5))
if d < rc[0] + delta:
array[i,j] = value
else:
array[i,j] = 0
# find each point x,y in the mask
@numba.jit(nopython=True)
def get_coordinates_in_mask(mask, N, M, out, value=1):
'''gets the coordinates of the points in a mask'''
k = 0
for i in numba.prange(M):
for j in numba.prange(N):
if mask[i,j] == value:
out[0][k] = i
out[1][k] = j
k += 1
def calculate_gradient_magnitude(data):
'''calculates the magnitude of the gradient of the input data'''
grad = GradientOperator(data.geometry)
mag = grad.direct(data)
mag = mag.get_item(0).power(2) + mag.get_item(1).power(2)
return mag
@numba.jit(nopython=True)
def set_mask_to_zero(mask, where, where_value, N, M):
for i in numba.prange(M):
for j in numba.prange(N):
if where[i,j] == where_value:
mask[i,j] = 0
def find_circle_parameters(data, ig):
'''Finds a circle that encompasses the data in the specified ImageGeometry
1. make FDK reconstruction of data in the ig ImageGeometry
3. calculate the magnitude of the gradient of the reconstruction
4. Threshold with otsu the magnitude of the gradient of the recon
5. fit a circle to the foreground points obtained from the otsu filter of the gradient magnitude.
6. iterative procedure doing: remove from the data points a circle with radius smaller by 4 pixels from the one found at previous step.
Repeat until the number of points do not change
7. returns the radius and location of centre
Parameters:
-----------
data: input data, sinogram
ig: reconstruction volume geometry
Returns:
--------
ndarray containing radius, x coordinate and y coordinate (relative to the ImageGeometry) in pixel units.
'''
recon = FDK(data, ig).run()
mag = calculate_gradient_magnitude(recon)
# initial binary mask
thresh = threshold_otsu(mag.array)
binary_mask = mag.array > thresh
mask = ig.allocate(0.)
previous_num_datapoints = mask.size
num_iterations = 20
delta = 4 # pixels
value = 1
for i in range(num_iterations):
maskarr = mask > 0
set_mask_to_zero(binary_mask, maskarr, value, *binary_mask.shape)
# find the coordinates of the points in the binary mask
num_datapoints = np.sum(binary_mask)
# print ("iteration {}, num_datapoints {}, sum(mask) {}".format(i, num_datapoints, np.sum(maskarr)))
if num_datapoints < previous_num_datapoints:
previous_num_datapoints = num_datapoints
else:
return fitted_circle
out = np.zeros((2, num_datapoints), dtype=int)
# finds the coordinates of the foreground points
get_coordinates_in_mask(binary_mask, *binary_mask.shape, out)
# fit a circle to the points
fitted_circle = fit_circle(*out)
# fill a mask for next iteration
mask.fill(0)
# create a circle with a radius 4 pixel smaller than the fit and fill mask with it
smaller_circle = fitted_circle.copy()
smaller_circle[0] -= delta
fill_circular_mask(smaller_circle, mask.array, value, *mask.shape)
return fitted_circle
def apply_crazy_threshold(data):
data_segmented = data.copy()
data_segmented.array[data_segmented.array<0]=0
thresh = threshold_multiotsu(data_segmented.array,4)
#background, interior holes, bad signal, good signal
data_segmented.array[data.array <= thresh[1]] = 0
data_segmented.array[data.array > thresh[1]] = 1
return data_segmented