-
Notifications
You must be signed in to change notification settings - Fork 391
/
riscv64-asm.c
2437 lines (2207 loc) · 77.7 KB
/
riscv64-asm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*************************************************************/
/*
* RISCV64 assembler for TCC
*
*/
#ifdef TARGET_DEFS_ONLY
#define CONFIG_TCC_ASM
/* 32 general purpose + 32 floating point registers */
#define NB_ASM_REGS 64
ST_FUNC void g(int c);
ST_FUNC void gen_le16(int c);
ST_FUNC void gen_le32(int c);
/*************************************************************/
#else
/*************************************************************/
#define USING_GLOBALS
#include "tcc.h"
enum {
OPT_REG,
OPT_IM12S,
OPT_IM32,
};
// Registers go from 0 to 31. We use next bit to choose general/float
#define REG_FLOAT_MASK 0x20
#define REG_IS_FLOAT(register_index) ((register_index) & REG_FLOAT_MASK)
#define REG_VALUE(register_index) ((register_index) & (REG_FLOAT_MASK-1))
#define C_ENCODE_RS1(register_index) (REG_VALUE(register_index) << 7)
#define C_ENCODE_RS2(register_index) (REG_VALUE(register_index) << 2)
#define ENCODE_RD(register_index) (REG_VALUE(register_index) << 7)
#define ENCODE_RS1(register_index) (REG_VALUE(register_index) << 15)
#define ENCODE_RS2(register_index) (REG_VALUE(register_index) << 20)
#define NTH_BIT(b, n) ((b >> n) & 1)
#define OP_IM12S (1 << OPT_IM12S)
#define OP_IM32 (1 << OPT_IM32)
#define OP_REG (1 << OPT_REG)
typedef struct Operand {
uint32_t type;
union {
uint8_t reg;
uint16_t regset;
ExprValue e;
};
} Operand;
static const Operand zero = { OP_REG, { 0 }};
static const Operand ra = { OP_REG, { 1 }};
static const Operand zimm = { OP_IM12S };
static void asm_binary_opcode(TCCState* s1, int token);
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str);
ST_FUNC void asm_compute_constraints(ASMOperand *operands, int nb_operands, int nb_outputs, const uint8_t *clobber_regs, int *pout_reg);
static void asm_emit_a(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *rd1, int aq, int rl);
static void asm_emit_b(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *imm);
static void asm_emit_i(int token, uint32_t opcode, const Operand *rd, const Operand *rs1, const Operand *rs2);
static void asm_emit_j(int token, uint32_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_opcode(uint32_t opcode);
static void asm_emit_r(int token, uint32_t opcode, const Operand *rd, const Operand *rs1, const Operand *rs2);
static void asm_emit_s(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *imm);
static void asm_emit_u(int token, uint32_t opcode, const Operand *rd, const Operand *rs2);
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands, int nb_outputs, int is_output, uint8_t *clobber_regs, int out_reg);
static void asm_nullary_opcode(TCCState *s1, int token);
ST_FUNC void asm_opcode(TCCState *s1, int token);
static int asm_parse_csrvar(int t);
ST_FUNC int asm_parse_regvar(int t);
static void asm_ternary_opcode(TCCState *s1, int token);
static void asm_unary_opcode(TCCState *s1, int token);
static void asm_branch_opcode(TCCState *s1, int token, int argc);
ST_FUNC void gen_expr32(ExprValue *pe);
static void parse_operand(TCCState *s1, Operand *op);
static void parse_branch_offset_operand(TCCState *s1, Operand *op);
static void parse_operands(TCCState *s1, Operand *ops, int count);
static void parse_mem_access_operands(TCCState *s1, Operand* ops);
ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier);
/* C extension */
static void asm_emit_ca(int token, uint16_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_cb(int token, uint16_t opcode, const Operand *rs1, const Operand *imm);
static void asm_emit_ci(int token, uint16_t opcode, const Operand *rd, const Operand *imm);
static void asm_emit_ciw(int token, uint16_t opcode, const Operand *rd, const Operand *imm);
static void asm_emit_cj(int token, uint16_t opcode, const Operand *imm);
static void asm_emit_cl(int token, uint16_t opcode, const Operand *rd, const Operand *rs1, const Operand *imm);
static void asm_emit_cr(int token, uint16_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_cs(int token, uint16_t opcode, const Operand *rs2, const Operand *rs1, const Operand *imm);
static void asm_emit_css(int token, uint16_t opcode, const Operand *rs2, const Operand *imm);
/* XXX: make it faster ? */
ST_FUNC void g(int c)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 1;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind] = c;
ind = ind1;
}
ST_FUNC void gen_le16 (int i)
{
g(i);
g(i>>8);
}
ST_FUNC void gen_le32 (int i)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 4;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind++] = i & 0xFF;
cur_text_section->data[ind++] = (i >> 8) & 0xFF;
cur_text_section->data[ind++] = (i >> 16) & 0xFF;
cur_text_section->data[ind++] = (i >> 24) & 0xFF;
}
ST_FUNC void gen_expr32(ExprValue *pe)
{
gen_le32(pe->v);
}
static void asm_emit_opcode(uint32_t opcode) {
gen_le32(opcode);
}
static void asm_nullary_opcode(TCCState *s1, int token)
{
switch (token) {
// Sync instructions
case TOK_ASM_fence_i: // I
asm_emit_opcode((0x3 << 2) | 3| (1 << 12));
return;
// System calls
case TOK_ASM_ecall: // I (pseudo)
asm_emit_opcode((0x1C << 2) | 3 | (0 << 12));
return;
case TOK_ASM_ebreak: // I (pseudo)
asm_emit_opcode((0x1C << 2) | 3 | (0 << 12) | (1 << 20));
return;
// Other
case TOK_ASM_nop:
asm_emit_i(token, (4 << 2) | 3, &zero, &zero, &zimm);
return;
case TOK_ASM_wfi:
asm_emit_opcode((0x1C << 2) | 3 | (0x105 << 20));
return;
/* Pseudoinstructions */
case TOK_ASM_ret:
/* jalr zero, x1, 0 */
asm_emit_opcode( 0x67 | (0 << 12) | ENCODE_RS1(1) );
return;
/* C extension */
case TOK_ASM_c_ebreak:
asm_emit_cr(token, 2 | (9 << 12), &zero, &zero);
return;
case TOK_ASM_c_nop:
asm_emit_ci(token, 1, &zero, &zimm);
return;
default:
expect("nullary instruction");
}
}
/* Parse a text containing operand and store the result in OP */
static void parse_operand(TCCState *s1, Operand *op)
{
ExprValue e = {0};
Sym label = {0};
int8_t reg;
op->type = 0;
if ((reg = asm_parse_regvar(tok)) != -1) {
next(); // skip register name
op->type = OP_REG;
op->reg = (uint8_t) reg;
return;
} else if (tok == '$') {
/* constant value */
next(); // skip '#' or '$'
} else if ((e.v = asm_parse_csrvar(tok)) != -1) {
next();
} else {
asm_expr(s1, &e);
}
op->type = OP_IM32;
op->e = e;
/* compare against unsigned 12-bit maximum */
if (!op->e.sym) {
if ((int) op->e.v >= -0x1000 && (int) op->e.v < 0x1000)
op->type = OP_IM12S;
} else if (op->e.sym->type.t & (VT_EXTERN | VT_STATIC)) {
label.type.t = VT_VOID | VT_STATIC;
/* use the medium PIC model: GOT, auipc, lw */
if (op->e.sym->type.t & VT_STATIC)
greloca(cur_text_section, op->e.sym, ind, R_RISCV_PCREL_HI20, 0);
else
greloca(cur_text_section, op->e.sym, ind, R_RISCV_GOT_HI20, 0);
put_extern_sym(&label, cur_text_section, ind, 0);
greloca(cur_text_section, &label, ind+4, R_RISCV_PCREL_LO12_I, 0);
op->type = OP_IM12S;
op->e.v = 0;
} else {
expect("operand");
}
}
static void parse_branch_offset_operand(TCCState *s1, Operand *op){
ExprValue e = {0};
asm_expr(s1, &e);
op->type = OP_IM32;
op->e = e;
/* compare against unsigned 12-bit maximum */
if (!op->e.sym) {
if ((int) op->e.v >= -0x1000 && (int) op->e.v < 0x1000)
op->type = OP_IM12S;
} else if (op->e.sym->type.t & (VT_EXTERN | VT_STATIC)) {
greloca(cur_text_section, op->e.sym, ind, R_RISCV_BRANCH, 0);
/* XXX: Implement far branches */
op->type = OP_IM12S;
op->e.v = 0;
} else {
expect("operand");
}
}
static void parse_jump_offset_operand(TCCState *s1, Operand *op){
ExprValue e = {0};
asm_expr(s1, &e);
op->type = OP_IM32;
op->e = e;
/* compare against unsigned 12-bit maximum */
if (!op->e.sym) {
if ((int) op->e.v >= -0x1000 && (int) op->e.v < 0x1000)
op->type = OP_IM12S;
} else if (op->e.sym->type.t & (VT_EXTERN | VT_STATIC)) {
greloca(cur_text_section, op->e.sym, ind, R_RISCV_JAL, 0);
op->type = OP_IM12S;
op->e.v = 0;
} else {
expect("operand");
}
}
static void parse_operands(TCCState *s1, Operand* ops, int count){
int i;
for (i = 0; i < count; i++) {
if ( i != 0 )
skip(',');
parse_operand(s1, &ops[i]);
}
}
/* parse `X, imm(Y)` to {X, Y, imm} operands */
static void parse_mem_access_operands(TCCState *s1, Operand* ops){
Operand op;
parse_operand(s1, &ops[0]);
skip(',');
if ( tok == '(') {
/* `X, (Y)` case*/
next();
parse_operand(s1, &ops[1]);
skip(')');
ops[2] = zimm;
} else {
parse_operand(s1, &ops[2]);
if ( tok == '('){
/* `X, imm(Y)` case*/
next();
parse_operand(s1, &ops[1]);
skip(')');
} else {
/* `X, Y` case*/
/* we parsed Y thinking it was imm, swap and default imm to zero */
op = ops[2];
ops[1] = ops[2];
ops[2] = op;
ops[2] = zimm;
}
}
}
/* This is special: First operand is optional */
static void asm_jal_opcode(TCCState *s1, int token){
Operand ops[2];
if (token == TOK_ASM_j ){
ops[0] = zero; // j offset
} else if (asm_parse_regvar(tok) == -1) {
ops[0] = ra; // jal offset
} else {
// jal reg, offset
parse_operand(s1, &ops[0]);
if ( tok == ',') next(); else expect("','");
}
parse_jump_offset_operand(s1, &ops[1]);
asm_emit_j(token, 0x6f, &ops[0], &ops[1]);
}
/* This is special: It can be a pseudointruction or a instruction */
static void asm_jalr_opcode(TCCState *s1, int token){
Operand ops[3];
Operand op;
parse_operand(s1, &ops[0]);
if ( tok == ',')
next();
else {
/* no more operands, it's the pseudoinstruction:
* jalr rs
* Expand to:
* jalr ra, 0(rs)
*/
asm_emit_i(token, 0x67 | (0 << 12), &ra, &ops[0], &zimm);
return;
}
if ( tok == '(') {
/* `X, (Y)` case*/
next();
parse_operand(s1, &ops[1]);
skip(')');
ops[2] = zimm;
} else {
parse_operand(s1, &ops[2]);
if ( tok == '('){
/* `X, imm(Y)` case*/
next();
parse_operand(s1, &ops[1]);
skip(')');
} else {
/* `X, Y` case*/
/* we parsed Y thinking it was imm, swap and default imm to zero */
op = ops[2];
ops[1] = ops[2];
ops[2] = op;
ops[2] = zimm;
}
}
/* jalr(RD, RS1, IMM); I-format */
asm_emit_i(token, 0x67 | (0 << 12), &ops[0], &ops[1], &ops[2]);
}
static void asm_unary_opcode(TCCState *s1, int token)
{
uint32_t opcode = (0x1C << 2) | 3 | (2 << 12);
Operand op;
parse_operands(s1, &op, 1);
/* Note: Those all map to CSR--so they are pseudo-instructions. */
opcode |= ENCODE_RD(op.reg);
switch (token) {
/* pseudoinstructions */
case TOK_ASM_rdcycle:
asm_emit_opcode(opcode | (0xC00 << 20));
return;
case TOK_ASM_rdcycleh:
asm_emit_opcode(opcode | (0xC80 << 20));
return;
case TOK_ASM_rdtime:
asm_emit_opcode(opcode | (0xC01 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdtimeh:
asm_emit_opcode(opcode | (0xC81 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdinstret:
asm_emit_opcode(opcode | (0xC02 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdinstreth:
asm_emit_opcode(opcode | (0xC82 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_jr:
/* jalr zero, 0(rs)*/
asm_emit_i(token, 0x67 | (0 << 12), &zero, &op, &zimm);
return;
case TOK_ASM_call:
/* auipc ra, 0 */
greloca(cur_text_section, op.e.sym, ind, R_RISCV_CALL, 0);
asm_emit_opcode(3 | (5 << 2) | ENCODE_RD(1));
/* jalr zero, 0(ra) */
asm_emit_opcode(0x67 | (0 << 12) | ENCODE_RS1(1));
return;
case TOK_ASM_tail:
/* auipc x6, 0 */
greloca(cur_text_section, op.e.sym, ind, R_RISCV_CALL, 0);
asm_emit_opcode(3 | (5 << 2) | ENCODE_RD(6));
/* jalr zero, 0(x6) */
asm_emit_opcode(0x67 | (0 << 12) | ENCODE_RS1(6));
return;
/* C extension */
case TOK_ASM_c_j:
asm_emit_cj(token, 1 | (5 << 13), &op);
return;
case TOK_ASM_c_jal: /* RV32C-only */
asm_emit_cj(token, 1 | (1 << 13), &op);
return;
case TOK_ASM_c_jalr:
asm_emit_cr(token, 2 | (9 << 12), &op, &zero);
return;
case TOK_ASM_c_jr:
asm_emit_cr(token, 2 | (8 << 12), &op, &zero);
return;
default:
expect("unary instruction");
}
}
static void asm_emit_u(int token, uint32_t opcode, const Operand* rd, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_IM12S && rs2->type != OP_IM32) {
tcc_error("'%s': Expected second source operand that is an immediate value", get_tok_str(token, NULL));
} else if (rs2->e.v >= 0x100000) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 0xfffff", get_tok_str(token, NULL));
}
/* U-type instruction:
31...12 imm[31:12]
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | (rs2->e.v << 12));
}
static int parse_fence_operand(){
int t = tok;
if ( tok == TOK_ASM_or ){
// we are in a fence instruction, parse as output read
t = TOK_ASM_or_fence;
}
next();
return t - (TOK_ASM_w_fence - 1);
}
static void asm_fence_opcode(TCCState *s1, int token){
// `fence` is both an instruction and a pseudoinstruction:
// `fence` expands to `fence iorw, iorw`
int succ = 0xF, pred = 0xF;
if (tok != TOK_LINEFEED && tok != ';' && tok != CH_EOF){
pred = parse_fence_operand();
if ( pred > 0xF || pred < 0) {
tcc_error("'%s': Expected first operand that is a valid predecessor operand", get_tok_str(token, NULL));
}
skip(',');
succ = parse_fence_operand();
if ( succ > 0xF || succ < 0) {
tcc_error("'%s': Expected second operand that is a valid successor operand", get_tok_str(token, NULL));
}
}
asm_emit_opcode((0x3 << 2) | 3 | (0 << 12) | succ<<20 | pred<<24);
}
static void asm_binary_opcode(TCCState* s1, int token)
{
Operand imm = { OP_IM12S };
Operand ops[2];
int32_t lo;
uint32_t hi;
parse_operands(s1, &ops[0], 2);
switch (token) {
case TOK_ASM_lui:
asm_emit_u(token, (0xD << 2) | 3, &ops[0], &ops[1]);
return;
case TOK_ASM_auipc:
asm_emit_u(token, (0x05 << 2) | 3, &ops[0], &ops[1]);
return;
/* C extension */
case TOK_ASM_c_add:
asm_emit_cr(token, 2 | (9 << 12), ops, ops + 1);
return;
case TOK_ASM_c_mv:
asm_emit_cr(token, 2 | (8 << 12), ops, ops + 1);
return;
case TOK_ASM_c_addi16sp:
asm_emit_ci(token, 1 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_addi:
asm_emit_ci(token, 1, ops, ops + 1);
return;
case TOK_ASM_c_addiw:
asm_emit_ci(token, 1 | (1 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fldsp:
asm_emit_ci(token, 2 | (1 << 13), ops, ops + 1);
return;
case TOK_ASM_c_flwsp: /* RV32FC-only */
asm_emit_ci(token, 2 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_ldsp:
asm_emit_ci(token, 2 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_li:
asm_emit_ci(token, 1 | (2 << 13), ops, ops + 1);
return;
case TOK_ASM_c_lui:
asm_emit_ci(token, 1 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_lwsp:
asm_emit_ci(token, 2 | (2 << 13), ops, ops + 1);
return;
case TOK_ASM_c_slli:
asm_emit_ci(token, 2, ops, ops + 1);
return;
case TOK_ASM_c_addi4spn:
asm_emit_ciw(token, 0, ops, ops + 1);
return;
#define CA (1 | (3 << 10) | (4 << 13))
case TOK_ASM_c_addw:
asm_emit_ca(token, CA | (1 << 5) | (1 << 12), ops, ops + 1);
return;
case TOK_ASM_c_and:
asm_emit_ca(token, CA | (3 << 5), ops, ops + 1);
return;
case TOK_ASM_c_or:
asm_emit_ca(token, CA | (2 << 5), ops, ops + 1);
return;
case TOK_ASM_c_sub:
asm_emit_ca(token, CA, ops, ops + 1);
return;
case TOK_ASM_c_subw:
asm_emit_ca(token, CA | (1 << 12), ops, ops + 1);
return;
case TOK_ASM_c_xor:
asm_emit_ca(token, CA | (1 << 5), ops, ops + 1);
return;
#undef CA
case TOK_ASM_c_andi:
asm_emit_cb(token, 1 | (2 << 10) | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_beqz:
asm_emit_cb(token, 1 | (6 << 13), ops, ops + 1);
return;
case TOK_ASM_c_bnez:
asm_emit_cb(token, 1 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_srai:
asm_emit_cb(token, 1 | (1 << 10) | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_srli:
asm_emit_cb(token, 1 | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_sdsp:
asm_emit_css(token, 2 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_swsp:
asm_emit_css(token, 2 | (6 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fswsp: /* RV32FC-only */
asm_emit_css(token, 2 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fsdsp:
asm_emit_css(token, 2 | (5 << 13), ops, ops + 1);
return;
/* pseudoinstructions */
/* rd, sym */
case TOK_ASM_la:
/* auipc rd, 0 */
asm_emit_u(token, 3 | (5 << 2), ops, ops + 1);
/* lw rd, rd, 0 */
asm_emit_i(token, 3 | (2 << 12), ops, ops, ops + 1);
return;
case TOK_ASM_lla:
/* auipc rd, 0 */
asm_emit_u(token, 3 | (5 << 2), ops, ops + 1);
/* addi rd, rd, 0 */
asm_emit_i(token, 3 | (4 << 2), ops, ops, ops + 1);
return;
case TOK_ASM_li:
if(ops[1].type != OP_IM32 && ops[1].type != OP_IM12S){
tcc_error("'%s': Expected first source operand that is an immediate value between 0 and 0xFFFFFFFFFFFFFFFF", get_tok_str(token, NULL));
}
lo = ops[1].e.v;
hi = (int64_t)ops[1].e.v >> 32;
if(lo < 0){
hi += 1;
}
imm.e.v = ((hi + 0x800) & 0xfffff000) >> 12;
/* lui rd, HI_20(HI_32(imm)) */
asm_emit_u(token, (0xD << 2) | 3, &ops[0], &imm);
/* addi rd, rd, LO_12(HI_32(imm)) */
imm.e.v = (int32_t)hi<<20>>20;
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[0], &imm);
/* slli rd, rd, 12 */
imm.e.v = 12;
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[0], &imm);
/* addi rd, rd, HI_12(LO_32(imm)) */
imm.e.v = (lo + (1<<19)) >> 20;
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[0], &imm);
/* slli rd, rd, 12 */
imm.e.v = 12;
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[0], &imm);
/* addi rd, rd, HI_12(LO_20(LO_32imm)) */
lo = lo << 12 >> 12;
imm.e.v = lo >> 8;
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[0], &imm);
/* slli rd, rd, 8 */
imm.e.v = 8;
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[0], &imm);
/* addi rd, rd, LO_8(LO_20(LO_32imm)) */
lo &= 0xff;
imm.e.v = lo << 20 >> 20;
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[0], &imm);
return;
case TOK_ASM_mv:
/* addi rd, rs, 0 */
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[1], &imm);
return;
case TOK_ASM_not:
/* xori rd, rs, -1 */
imm.e.v = -1;
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &ops[1], &imm);
return;
case TOK_ASM_neg:
/* sub rd, x0, rs */
imm.e.v = 1;
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &zero, &imm);
return;
case TOK_ASM_negw:
/* sub rd, x0, rs */
imm.e.v = 1;
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &zero, &imm);
return;
case TOK_ASM_jump:
/* auipc x5, 0 */
asm_emit_opcode(3 | (5 << 2) | ENCODE_RD(5));
greloca(cur_text_section, ops->e.sym, ind, R_RISCV_CALL, 0);
/* jalr zero, 0(x5) */
asm_emit_opcode(0x67 | (0 << 12) | ENCODE_RS1(5));
return;
case TOK_ASM_seqz:
/* sltiu rd, rs, 1 */
imm.e.v = 1;
asm_emit_i(token, (0x4 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &imm);
return;
case TOK_ASM_snez:
/* sltu rd, zero, rs */
imm.e.v = 1;
asm_emit_r(token, (0xC << 2) | 3 | (3 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_sltz:
/* slt rd, rs, zero */
asm_emit_r(token, (0xC << 2) | 3 | (2 << 12), &ops[0], &ops[1], &zero);
return;
case TOK_ASM_sgtz:
/* slt rd, zero, rs */
asm_emit_r(token, (0xC << 2) | 3 | (2 << 12), &ops[0], &zero, &ops[1]);
return;
default:
expect("binary instruction");
}
}
/* caller: Add funct3, funct7 into opcode */
static void asm_emit_r(int token, uint32_t opcode, const Operand* rd, const Operand* rs1, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected second source operand that is a register or immediate", get_tok_str(token, NULL));
}
/* R-type instruction:
31...25 funct7
24...20 rs2
19...15 rs1
14...12 funct3
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | ENCODE_RS1(rs1->reg) | ENCODE_RS2(rs2->reg));
}
/* caller: Add funct3 into opcode */
static void asm_emit_i(int token, uint32_t opcode, const Operand* rd, const Operand* rs1, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_IM12S) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 8191", get_tok_str(token, NULL));
}
/* I-type instruction:
31...20 imm[11:0]
19...15 rs1
14...12 funct3
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | ENCODE_RS1(rs1->reg) | (rs2->e.v << 20));
}
static void asm_emit_j(int token, uint32_t opcode, const Operand* rd, const Operand* rs2)
{
uint32_t imm;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_IM12S && rs2->type != OP_IM32) {
tcc_error("'%s': Expected second source operand that is an immediate value", get_tok_str(token, NULL));
}
imm = rs2->e.v;
/* even offsets in a +- 1 MiB range */
if ((int)imm > (1 << 20) -1 || (int)imm <= -1 * ((1 << 20) -1)) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 0x1fffff", get_tok_str(token, NULL));
}
if (imm & 1) {
tcc_error("'%s': Expected second source operand that is an even immediate value", get_tok_str(token, NULL));
}
/* J-type instruction:
31 imm[20]
30...21 imm[10:1]
20 imm[11]
19...12 imm[19:12]
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | (((imm >> 20) & 1) << 31) | (((imm >> 1) & 0x3ff) << 21) | (((imm >> 11) & 1) << 20) | (((imm >> 12) & 0xff) << 12));
}
static void asm_mem_access_opcode(TCCState *s1, int token)
{
Operand ops[3];
parse_mem_access_operands(s1, &ops[0]);
/* Pseudoinstruction: inst reg, label
* expand to:
* auipc reg, 0
* inst reg, 0(reg)
* And with the proper relocation to label
*/
if (ops[1].type == OP_IM32 && ops[1].e.sym && ops[1].e.sym->type.t & VT_STATIC){
ops[1] = ops[0];
/* set the offset to zero */
ops[2].type = OP_IM12S;
ops[2].e.v = 0;
/* auipc reg, 0 */
asm_emit_u(token, (0x05 << 2) | 3, &ops[0], &ops[2]);
}
switch (token) {
// l{b|h|w|d}[u] rd, imm(rs1); I-format
case TOK_ASM_lb:
asm_emit_i(token, (0x0 << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lh:
asm_emit_i(token, (0x0 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lw:
asm_emit_i(token, (0x0 << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_ld:
asm_emit_i(token, (0x0 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lbu:
asm_emit_i(token, (0x0 << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lhu:
asm_emit_i(token, (0x0 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lwu:
asm_emit_i(token, (0x0 << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
// s{b|h|w|d} rs2, imm(rs1); S-format (with rsX swapped)
case TOK_ASM_sb:
asm_emit_s(token, (0x8 << 2) | 3 | (0 << 12), &ops[1], &ops[0], &ops[2]);
return;
case TOK_ASM_sh:
asm_emit_s(token, (0x8 << 2) | 3 | (1 << 12), &ops[1], &ops[0], &ops[2]);
return;
case TOK_ASM_sw:
asm_emit_s(token, (0x8 << 2) | 3 | (2 << 12), &ops[1], &ops[0], &ops[2]);
return;
case TOK_ASM_sd:
asm_emit_s(token, (0x8 << 2) | 3 | (3 << 12), &ops[1], &ops[0], &ops[2]);
return;
}
}
static void asm_branch_opcode(TCCState *s1, int token, int argc)
{
Operand ops[3];
parse_operands(s1, &ops[0], argc-1);
skip(',');
parse_branch_offset_operand(s1, &ops[argc-1]);
switch(token){
/* branch (RS1, RS2, IMM); B-format */
case TOK_ASM_beq:
asm_emit_b(token, 0x63 | (0 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bne:
asm_emit_b(token, 0x63 | (1 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_blt:
asm_emit_b(token, 0x63 | (4 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bge:
asm_emit_b(token, 0x63 | (5 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bltu:
asm_emit_b(token, 0x63 | (6 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bgeu:
asm_emit_b(token, 0x63 | (7 << 12), ops, ops + 1, ops + 2);
return;
/* related pseudoinstructions */
case TOK_ASM_bgt:
asm_emit_b(token, 0x63 | (4 << 12), ops + 1, ops, ops + 2);
return;
case TOK_ASM_ble:
asm_emit_b(token, 0x63 | (5 << 12), ops + 1, ops, ops + 2);
return;
case TOK_ASM_bgtu:
asm_emit_b(token, 0x63 | (6 << 12), ops + 1, ops, ops + 2);
return;
case TOK_ASM_bleu:
asm_emit_b(token, 0x63 | (7 << 12), ops + 1, ops, ops + 2);
return;
/* shorter pseudoinstructions */
case TOK_ASM_bnez:
/* bne rs, zero, offset */
asm_emit_b(token, 0x63 | (1 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_beqz:
/* bne rs, zero, offset */
asm_emit_b(token, 0x63 | (0 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_blez:
/* bge rs, zero, offset */
asm_emit_b(token, 0x63 | (5 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_bgez:
/* bge zero, rs, offset */
asm_emit_b(token, 0x63 | (5 << 12), &zero, &ops[0], &ops[1]);
return;
case TOK_ASM_bltz:
/* blt rs, zero, offset */
asm_emit_b(token, 0x63 | (4 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_bgtz:
/* blt zero, rs, offset */
asm_emit_b(token, 0x63 | (4 << 12), &zero, &ops[0], &ops[1]);
return;
}
}
static void asm_ternary_opcode(TCCState *s1, int token)
{
Operand ops[3];
parse_operands(s1, &ops[0], 3);
switch (token) {
case TOK_ASM_sll:
asm_emit_r(token, (0xC << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slli:
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srl:
asm_emit_r(token, (0xC << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srli:
asm_emit_i(token, (0x4 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sra:
asm_emit_r(token, (0xC << 2) | 3 | (5 << 12) | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srai:
asm_emit_i(token, (0x4 << 2) | 3 | (5 << 12) | (16 << 26), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sllw:
asm_emit_r(token, (0xE << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slliw:
asm_emit_i(token, (6 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srlw:
asm_emit_r(token, (0xE << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srliw:
asm_emit_i(token, (0x6 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sraw:
asm_emit_r(token, (0xE << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sraiw:
asm_emit_i(token, (0x6 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
// Arithmetic (RD,RS1,(RS2|IMM)); R-format, I-format or U-format
case TOK_ASM_add:
asm_emit_r(token, (0xC << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addi:
asm_emit_i(token, (4 << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sub:
asm_emit_r(token, (0xC << 2) | 3 | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addw:
asm_emit_r(token, (0xE << 2) | 3 | (0 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addiw: // 64 bit
asm_emit_i(token, (0x6 << 2) | 3 | (0 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_subw:
asm_emit_r(token, (0xE << 2) | 3 | (0 << 12) | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
// Logical (RD,RS1,(RS2|IMM)); R-format or I-format
case TOK_ASM_xor:
asm_emit_r(token, (0xC << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_xori:
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_or:
asm_emit_r(token, (0xC << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_ori:
asm_emit_i(token, (0x4 << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_and:
asm_emit_r(token, (0xC << 2) | 3 | (7 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_andi:
asm_emit_i(token, (0x4 << 2) | 3 | (7 << 12), &ops[0], &ops[1], &ops[2]);
return;
// Compare (RD,RS1,(RS2|IMM)); R-format or I-format
case TOK_ASM_slt:
asm_emit_r(token, (0xC << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slti:
asm_emit_i(token, (0x4 << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sltu:
asm_emit_r(token, (0xC << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sltiu:
asm_emit_i(token, (0x4 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
/* M extension */
case TOK_ASM_div:
asm_emit_r(token, 0x33 | (4 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_divu:
asm_emit_r(token, 0x33 | (5 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;