forked from kvablack/LLaVA-server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
52 lines (41 loc) · 1.53 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import requests
from PIL import Image
import io
import pickle
import glob
import tqdm
from concurrent.futures import ThreadPoolExecutor
BATCH_SIZE = 18
# paths = glob.glob(f"target_paired_images_new_toykitchen7/*.jpg") * 100
paths = ["monkey.png"] * 100
def f(_):
for i in tqdm.tqdm(range(0, len(paths), BATCH_SIZE)):
batch_paths = paths[i : i + BATCH_SIZE]
jpeg_data = []
queries = []
answers = []
for path in batch_paths:
image = Image.open(path)
# Compress the images using JPEG
buffer = io.BytesIO()
image.save(buffer, format="JPEG", quality=80)
jpeg_data.append(buffer.getvalue())
queries.append([
"What animal is in this image?",
])
answers.append(["a monkey is looking at the camera"])
# texts.append(["What item is lying on the table?"])
data = {"images": jpeg_data, "queries": queries, "answers": answers}
data_bytes = pickle.dumps(data)
# Send the JPEG data in an HTTP POST request to the server
url = "http://127.0.0.1:8085"
response = requests.post(url, data=data_bytes)
# Print the response from the server
response_data = pickle.loads(response.content)
for output, score in zip(response_data["outputs"], response_data["recall"]):
print(output)
print(score)
print("--")
with ThreadPoolExecutor(max_workers=8) as executor:
for _ in executor.map(f, range(8)):
pass