-
Notifications
You must be signed in to change notification settings - Fork 3
/
replicate_analysis.py
executable file
·304 lines (267 loc) · 13.8 KB
/
replicate_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import PySimpleGUI as sg
import pandas as pd
import numpy as np
from statistics import mean
from pathlib import Path
import matplotlib.pyplot as plt
from matplotlib_venn import venn2
from matplotlib_venn import venn3
from matplotlib.pyplot import plot, ion, show
import matplotlib.gridspec as gridspec
import math, os, webbrowser
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from taxontabletools.taxontable_manipulation import strip_metadata
from collections import OrderedDict
def replicate_analysis(TaXon_table_xlsx, height, width, suffix_list, path_to_outdirs, template, theme, font_size, custom_colors, clustering_unit):
color1 = theme[0]
color2 = theme[1]
opacity_value = theme[2]
height = int(height)
width = int(width)
## load TaxonTable
TaXon_table_xlsx = Path(TaXon_table_xlsx)
TaXon_table_df = pd.read_excel(TaXon_table_xlsx)
TaXon_table_df = strip_metadata(TaXon_table_df)
sample_names = TaXon_table_df.columns[10:].tolist()
OTUs = TaXon_table_df["ID"].values.tolist()
derep_sample_names_dict = {}
unique_sample_names_list = []
replicates_dict = {}
for sample in sample_names:
sample_name = sample.split("_")[0:-1]
unique_sample_names_list.append("_".join(sample_name))
unique_sample_names_set = sorted(set(unique_sample_names_list))
############################################################################
## create the progress bar window
layout = [[sg.Text('Progress bar')],
[sg.ProgressBar(1000, orientation='h', size=(20, 20), key='progressbar')],
[sg.Cancel()]]
window_progress_bar = sg.Window('Progress bar', layout, keep_on_top=True)
progress_bar = window_progress_bar['progressbar']
progress_update = 0
progress_increase = 1000 / len(unique_sample_names_set) + 1
############################################################################
replicate_perc_shared_dict = {}
fig_main_dict = {}
reads_dict = {}
## create an output folder
replicate_analysis_name = Path(TaXon_table_xlsx).name.replace(".xlsx", "")
dirName = Path(str(path_to_outdirs) + "/Replicate_analysis/" + replicate_analysis_name)
if not os.path.exists(dirName):
os.mkdir(dirName)
for sample in unique_sample_names_set:
for i, suffix in enumerate(suffix_list):
replicates_dict["rep_" + str(i)] = sample + "_" + suffix_list[i]
replicate_names_list = list(replicates_dict.values())
try:
## calculate the number of shared OTUs
shared_OTUs_list = [row for row in TaXon_table_df[replicate_names_list].values.tolist() if 0 not in row]
present_OTUs_list = [row for row in TaXon_table_df[replicate_names_list].values.tolist() if row != [0]*len(replicate_names_list)]
perc_shared = round(len(shared_OTUs_list) / len(present_OTUs_list) * 100, 2)
replicate_perc_shared_dict[sample] = perc_shared
## calculate the percentage of reads that is discarded and kept
reads_total = sum([sum(row) for row in TaXon_table_df[replicate_names_list].values.tolist()])
reads_kept_perc = round(sum([sum(row) for row in shared_OTUs_list]) / reads_total * 100, 2)
reads_discarded_perc = round(100 - reads_kept_perc, 2)
reads_dict[sample] = [reads_kept_perc, reads_discarded_perc]
## create left sided OTU plot
fig_dict = {}
for i, OTU in enumerate(present_OTUs_list):
if 0 not in OTU:
fig_main_dict[i+1, sample, "Blue", "shared"] = [sum(OTU) / reads_total * 100]
else:
fig_main_dict[i+1, sample, "Red", "non-shared"] = [sum(OTU) / reads_total * 100]
except:
print("Warning! No replicates found for: " + sample)
############################################################################
event, values = window_progress_bar.read(timeout=10)
if event == 'Cancel' or event is None:
window_progress_bar.Close()
raise RuntimeError
# update bar with loop value +1 so that bar eventually reaches the maximum
progress_update += progress_increase
progress_bar.UpdateBar(progress_update)
############################################################################
window_progress_bar.Close()
########################################################################################################################
## figure 1 shared OTUs
samples = list(replicate_perc_shared_dict.keys())
shared_otus = list(replicate_perc_shared_dict.values())
y_title = "shared " + clustering_unit
fig = px.bar(x=samples, y=shared_otus, labels={"y": y_title, "x": "Sample", "text": y_title}, text=shared_otus)
y_title = 'shared ' + clustering_unit + ' (%)'
fig.update_yaxes(title=y_title, range=[0, 100], dtick=10, autorange=False)
fig.update_xaxes(title='', tickmode='linear')
fig.update_xaxes(tickangle=-90)
fig.update_layout(width=int(width), height=int(height), template=template, font_size=font_size, title_font_size=font_size)
fig.update_traces(marker_color=color1, marker_line_color=color2, marker_line_width=1.5, opacity=opacity_value)
## write files
output_pdf = Path(str(dirName) + "/" + TaXon_table_xlsx.stem + "_shared_" + clustering_unit + ".pdf")
output_html = Path(str(dirName) + "/" + TaXon_table_xlsx.stem + "_shared_" + clustering_unit + ".html")
fig.write_image(str(output_pdf))
fig.write_html(str(output_html))
########################################################################################################################
## figure 2 kept/discarded reads
samples = list(reads_dict.keys())
#discarded_reads = [reads[1] for reads in list(reads_dict.values())]
shared_reads = [reads[0] for reads in list(reads_dict.values())]
fig = px.bar(x=samples, y=shared_reads, labels={"y": "shared reads (%)", "x": "Sample", "text": "shared reads (%)"}, text=shared_reads)
fig.update_yaxes(title='shared reads (%)', range=[0, 100], dtick=10, autorange=False)
fig.update_xaxes(title='', tickmode='linear')
fig.update_xaxes(tickangle=-90)
fig.update_layout(width=int(width), height=int(height), template=template, font_size=font_size, title_font_size=font_size)
fig.update_traces(marker_color=color1, marker_line_color=color2, marker_line_width=1.5, opacity=opacity_value)
## write files
output_pdf2 = Path(str(dirName) + "/" + TaXon_table_xlsx.stem + "_shared" + clustering_unit + "_reads.pdf")
output_html2 = Path(str(dirName) + "/" + TaXon_table_xlsx.stem + "_shared" + clustering_unit + "_reads.html")
fig.write_image(str(output_pdf2))
fig.write_html(str(output_html2))
########################################################################################################################
## figure 3 OTU left side plot
## sort the dict by abundance
fig_main_dict_sorted = dict(sorted(fig_main_dict.items(), key=lambda item: item[1], reverse=True))
## collect y values >> read abundances
## collect x values >> rank
# y1, x1, m1, t1 = [], [], [], []
# y2, x2, m2, t2 = [], [], [], []
# i = 0
#
# for key, value in fig_main_dict_sorted.items():
# if key[3] == 'shared':
# y1 = y1 + value
# x1.append(i)
# m1.append(key[2])
# t1.append(key[3])
# i += 1
# else:
# y2 = y2 + value
# x2.append(i)
# m2.append(key[2])
# t2.append(key[3])
# i += 1
#
# max_reads = math.ceil(max(y1 + y2)) +1
# n_ranked_OTUs = i
# n_shared = len(y1)
# n_nonshared = len(y2)
# name1 = "shared (n=" + str(n_shared) + ")"
# name2 = "non shared (n=" + str(n_nonshared) + ")"
# c1 = color_discrete_sequence[0]
# c2 = color_discrete_sequence[1]
#
# fig = make_subplots(rows=2, cols=1, shared_xaxes=True)
# fig.add_trace(go.Scatter(x=x1, y=y1, mode='markers', marker=dict(size=8, color=c1), name=name1),row=1, col=1)
# fig.add_trace(go.Scatter(x=x2, y=y2, mode='markers', marker=dict(size=8, color=c2), name=name2),row=2, col=1)
# fig.update_xaxes(title='', showticklabels=True, row=1, col=1)
# fig.update_xaxes(title='ranked OTUs (by read abundance)', showticklabels=True, row=2, col=1)
# if log_transform == True:
# fig.update_yaxes(title="reads (log)", range=[0,max_reads])
# out_sub = "_log_"
# else:
# fig.update_yaxes(title="reads (%)", range=[0,105])
# out_sub = "_rel_"
# fig.update_layout(width=int(width), height=int(height), template=template, font_size=font_size, title_font_size=font_size)
#
# ## add annotations to both plots
# if add_annotations == True:
# for annotation in [1.0, 0.1, 0.01]:
# ## store annotation as text
# text = "<" + str(annotation) + "%"
# ## search for the x-axis rank of the annotation
# x_pos = []
# try:
# for rank, reads in zip(x1, y1):
# if round(reads, 3) <= annotation:
# x_pos = rank
# break
# except:
# pass
# if x_pos != []:
# ## y_pos is annotation
# fig.add_annotation(x=x_pos, y=2.5,
# text=text, showarrow=True, font=dict(size=font_size-2),
# align="center", arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="Black", ax=20, ay=-30,
# bordercolor=c1, borderwidth=1, borderpad=3, bgcolor=c1, opacity=0.9,
# row=1, col=1)
#
# ## search for the x-axis rank of the annotation
# x_pos = []
# try:
# for rank, reads in zip(x2, y2):
# if round(reads, 3) <= annotation:
# x_pos = rank
# break
# except:
# pass
# if x_pos != []:
# ## y_pos is annotation
# fig.add_annotation(x=x_pos, y=2.5,
# text=text, showarrow=True, font=dict(size=font_size-2),
# align="center", arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="Black", ax=20, ay=-30,
# bordercolor=c2, borderwidth=1, borderpad=3, bgcolor=c2, opacity=0.9,
# row=2, col=1)
########################################################################################################################
## figure 4 OTU bar plot v2
y1, y2 = [], []
for key, value in fig_main_dict_sorted.items():
if key[3] == 'shared':
y1 = y1 + value
else:
y2 = y2 + value
categories = [[100, 10], [10,1], [1,0.1], [0.1,0]]
bar_plot_dict = {}
n_OTUs_shared, n_OTUs_nonshared, names = [], [], []
fig = go.Figure()
for category in categories:
upper = category[0]
lower = category[1]
shared = len([y for y in y1 if (y > lower and y < upper)])
nonshared = len([y for y in y2 if (y > lower and y < upper)])
n_OTUs = shared + nonshared
shared_perc = shared / n_OTUs * 100
nonshared_perc = nonshared / n_OTUs * 100
n_OTUs_shared.append(shared_perc)
n_OTUs_nonshared.append(nonshared_perc)
if category != [0.1,0]:
text = str(category[0]) + "%-" + str(category[1]) + "%"
names.append(text)
fig.add_annotation(x=text, y=100, text="n="+str(n_OTUs), font=dict(size=font_size-2), showarrow=False, yshift=10)
else:
text = "<0.1%"
names.append(text)
fig.add_annotation(x=text, y=100, text="n="+str(n_OTUs), font=dict(size=font_size-2), showarrow=False, yshift=10)
fig.add_trace(go.Bar(x=names, y=n_OTUs_shared, name='shared', marker_color=custom_colors[0]))
fig.add_trace(go.Bar(x=names, y=n_OTUs_nonshared, name='non-shared', marker_color=custom_colors[1]))
fig.update_layout(width=int(width), height=int(height), template=template, font_size=font_size, title_font_size=font_size)
y_title = clustering_unit + ' per bin (%)'
fig.update_yaxes(title=y_title)
fig.update_xaxes(title='read abundance')
## write files
output_pdf3 = Path(str(dirName) + "/" + TaXon_table_xlsx.stem + "_shared_nonshared.pdf")
output_html3 = Path(str(dirName) + "/" + TaXon_table_xlsx.stem + "_shared_nonshared.html")
fig.write_image(str(output_pdf3))
fig.write_html(str(output_html3))
########################################################################################################################
## write statistics file
output_txt = Path(str(dirName) + "/" + TaXon_table_xlsx.stem + "_stats.txt")
f = open(output_txt, "w")
avg_shared_otus = round(mean(shared_otus),2 )
avg_shared_reads = round(mean(shared_reads),2 )
n_samples = len(samples)
text = "Average shared " + clustering_unit + ": " + str(avg_shared_otus) + "%\n" + "Average shared reads: " + str(avg_shared_reads) + "%\n" + "Number of samples: " + str(n_samples)
f.write(text)
f.close()
## ask to show file
answer = sg.PopupYesNo(text + '\n\nShow all three plots?', keep_on_top=True)
if answer == "Yes":
webbrowser.open('file://' + str(output_html3))
webbrowser.open('file://' + str(output_html2))
webbrowser.open('file://' + str(output_html))
## print closing text
closing_text = "The three plots are found under:\n" + "Projects/Replicate_analysis/"
sg.Popup(closing_text, title="Finished", keep_on_top=True)
## write log
from taxontabletools.create_log import ttt_log
ttt_log("replicate analysis", "analysis", TaXon_table_xlsx.name, output_pdf.name, "nan", path_to_outdirs)