-
Notifications
You must be signed in to change notification settings - Fork 3
/
create_taxon_list.py
executable file
·334 lines (285 loc) · 14.8 KB
/
create_taxon_list.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import requests_html, json, datetime
import re, sys, subprocess, os
import PySimpleGUI as sg
import pandas as pd
from tqdm import tqdm
from statistics import mean
from pandas import DataFrame
from datetime import date
import numpy as np
from pathlib import Path
from Bio import pairwise2
from Bio.Seq import Seq
from taxontabletools.taxontable_manipulation import strip_metadata
from taxontabletools.taxontable_manipulation import collect_metadata
from taxontabletools.taxontable_manipulation import add_metadata
def create_taxon_list(TaXon_table_xlsx, taxon_list_output_file_name, create_gbif_link, calc_dist, use_metadata, taxon_tools_version, path_to_outdirs, clustering_unit):
##### functions
def open_table(table):
if sys.platform == "win32":
os.startfile(table)
else:
opener = "open" if sys.platform == 'darwin' else 'xdg-open'
subprocess.call([opener, table])
def slices(list, slice):
for i in range(0, len(list), slice):
yield list[i : i + slice]
def fetch_metadata(Meta_data_table_df):
available_metadata = Meta_data_table_df.columns.tolist()[1:]
win2_active = True
meta_data_to_test_list = list(slices([sg.Radio(name, "metadata", key=name, default=True) for name in sorted(available_metadata)], 5))
layout2 = [[sg.Text("Taxon list", size=(20,1))],
[sg.Frame(layout = meta_data_to_test_list, title = 'Check metadata to test')],
[sg.Text('',size=(1,1))],
[sg.Button('Calculate')],
[sg.Button('Skip')]]
win2 = sg.Window('Taxon list', layout2, keep_on_top=True)
while True:
event2, values2 = win2.Read()
if event2 == 'Calculate':
for input_value, test in values2.items():
if (test == True):
meta_data_to_test = input_value
win2.Close()
win2_active = False
return meta_data_to_test
if event2 is None or event2 == "Skip":
win2.Close()
win2_active = False
return False
def gbif_requester(species_name):
## create an html session
with requests_html.HTMLSession() as session:
## generate html request name
request_name = '%20'.join(species_name.split(' '))
## request that name
r = session.get('https://api.gbif.org/v1/species?name=%s&limit=1' % request_name)
## parse json
res = json.loads(r.text)
## return the link
if res['results']:
species_id = res['results'][0]['key']
link = ['https://www.gbif.org/species/%s' % res['results'][0]['key']]
else:
species_id = False
link = [""]
if species_id != False:
## collect vernacular name
## create an html session
with requests_html.HTMLSession() as session:
## request that name
r = session.get('https://api.gbif.org/v1/species/%s/vernacularNames' % species_id)
try:
## parse json
res = json.loads(r.text)
## search for english common name
name = list(set([name["vernacularName"] for name in res['results'] if name["language"] == "eng"]))
if len(name) > 1:
## remove duplicates from the vernacular name list
name = list(set([i.lower() for i in name]))
name = [', '.join(name)]
if name == []:
name = [""]
return name + link
except:
return [""] + link
else:
return ["", ""]
def pw_distance(seq1, seq2):
len1 = len(seq1)
len2 = len(seq2)
length = max([len1, len2])
alignments = pairwise2.align.globalxx(seq1, seq2)
max_score = max([alignment.score for alignment in alignments])
diff = 100 - (max_score / length * 100)
diff = round(diff, 2)
return(diff)
# load the TaXon table
TaXon_table_xlsx = Path(TaXon_table_xlsx)
TaXon_table_df = pd.read_excel(TaXon_table_xlsx).fillna('nan')
TaXon_table_df_metadata = collect_metadata(TaXon_table_df)
TaXon_table_df = strip_metadata(TaXon_table_df)
samples = TaXon_table_df.columns.tolist()[10:]
n_samples = len(samples)
total_reads = sum([sum(reads) for reads in TaXon_table_df[samples].values.tolist()])
Meta_data_table_xlsx = Path(str(path_to_outdirs) + "/" + "Meta_data_table" + "/" + TaXon_table_xlsx.stem + "_metadata.xlsx")
if use_metadata == True:
if Meta_data_table_xlsx.exists():
## load metadata list
Meta_data_table_df = pd.read_excel(Meta_data_table_xlsx, header=0).fillna("nan")
Meta_data_table_samples = Meta_data_table_df['Samples'].tolist()
meta_data_to_test = fetch_metadata(Meta_data_table_df)
if meta_data_to_test != False:
metadata_list = Meta_data_table_df[meta_data_to_test].values.tolist()
metadata_loc = Meta_data_table_df.columns.tolist().index(meta_data_to_test)
## drop samples with metadata called nan (= empty)
drop_samples = [i[0] for i in Meta_data_table_df.values.tolist() if i[metadata_loc] == "nan"]
if drop_samples != []:
## filter the TaXon table
TaXon_table_df = TaXon_table_df.drop(drop_samples, axis=1)
TaXon_table_samples = TaXon_table_df.columns.tolist()[10:]
## also remove empty OTUs
row_filter_list = []
for row in TaXon_table_df.values.tolist():
reads = set(row[10:])
if reads != {0}:
row_filter_list.append(row)
columns = TaXon_table_df.columns.tolist()
TaXon_table_df = pd.DataFrame(row_filter_list, columns=columns)
Meta_data_table_df = pd.DataFrame([i for i in Meta_data_table_df.values.tolist() if i[0] not in drop_samples], columns=Meta_data_table_df.columns.tolist())
Meta_data_table_samples = Meta_data_table_df['Samples'].tolist()
metadata_samples_dict = {}
for i in Meta_data_table_df[["Samples", meta_data_to_test]].values.tolist():
metadata = i[1]
sample = i[0]
if metadata in metadata_samples_dict.keys():
metadata_samples_dict[metadata] = metadata_samples_dict[metadata] + [sample]
else:
metadata_samples_dict[metadata] = [sample]
for metadata, samples in metadata_samples_dict.items():
TaXon_table_df[metadata] = [sum(i) for i in TaXon_table_df[samples].values.tolist()]
TaXon_table_df = TaXon_table_df.drop(samples, axis=1)
samples = TaXon_table_df.columns.tolist()[10:]
n_samples = len(samples)
total_reads = sum([sum(reads) for reads in TaXon_table_df[samples].values.tolist()])
else:
sg.PopupOK("Warning: Metadata table does not exists.\n\nPlease first create a metadata table!\n\nSkipping metadata occupancy.", title="Warning")
taxonomic_levels = TaXon_table_df.columns.values.tolist()[1:7]
TaXon_table_df["FullName"] = ['<>'.join(t) for t in TaXon_table_df[taxonomic_levels].values.tolist()]
## create an empty data frame
taxon_list_df = pd.DataFrame()
## add unique species IDs
unique_species = list(set(['<>'.join(t) for t in TaXon_table_df[taxonomic_levels].values.tolist()]))
taxon_list_df["FullName"] = unique_species
# create the output files
if taxon_list_output_file_name == '':
taxon_list_output_file_name = "my_taxon_list"
output_xlsx = Path(str(path_to_outdirs) + "/" + "Taxon_lists" + "/" + taxon_list_output_file_name + ".xlsx")
answer = "Yes"
if output_xlsx.exists():
answer = sg.PopupYesNo("Taxon list already exists! Overwrite?")
if answer == "Yes":
## create a species dict
taxon_dict = {}
for OTU in TaXon_table_df.values.tolist():
taxon = OTU[-1]
if taxon not in taxon_dict.keys():
n_reads = sum(OTU[10:-1])
n_OTUs = 1
sequence = [OTU[9]]
taxon_dict[taxon] = [n_reads, n_OTUs, sequence]
else:
n_reads = taxon_dict[taxon][0] + sum(OTU[10:-1])
n_OTUs = taxon_dict[taxon][1] + 1
sequence = taxon_dict[taxon][2] + [OTU[9]]
taxon_dict[taxon] = [n_reads, n_OTUs, sequence]
sg.Popup('TTT will be minimized and no progress bar will be shown to increase the performance.\nPlease refer to the console for progress updates.')
## create output lists
n_OTUs_list = []
n_reads_list = []
n_reads_rel_list = []
max_dist_list = []
min_dist_list = []
avg_dist_list = []
rel_occurrence_list = []
abs_occurrences_list = []
vernacular_name_list = []
gbif_link_list = []
## calculate all statistics per taxon
for taxon in tqdm(taxon_list_df["FullName"], desc='Creating taxon list'):
## calculate statistics
n_reads = taxon_dict[taxon][0]
n_OTUs = taxon_dict[taxon][1]
sequences = taxon_dict[taxon][2]
n_reads_rel = round(n_reads / total_reads * 100, 3)
species_name = taxon.split("<>")[-1]
## OCCURENCES
if use_metadata == True:
df = pd.DataFrame([i[10:-1] for i in TaXon_table_df.values.tolist() if taxon in i], columns=samples)
sample_occurrences = []
for sample in samples:
if sum(df[sample]) != 0:
sample_occurrences.append(sample)
rel_occurences = round(len(sample_occurrences) / n_samples * 100, 3)
abs_occurrences = []
for sample in samples:
if sample in sample_occurrences:
abs_occurrences.append('x')
else:
abs_occurrences.append('')
else:
df = pd.DataFrame([i[10:-1] for i in TaXon_table_df.values.tolist() if taxon in i], columns=samples)
sample_occurrences = []
for sample in samples:
if sum(df[sample]) != 0:
sample_occurrences.append(sample)
rel_occurences = round(len(sample_occurrences) / n_samples * 100, 3)
abs_occurrences = []
for sample in samples:
if sample in sample_occurrences:
abs_occurrences.append('x')
else:
abs_occurrences.append('')
## INTRASPECIFIC DISTANCE
if calc_dist == True:
if n_OTUs != 1 and species_name != "nan":
distances = []
for main_sequence in tqdm(sequences, leave=False, desc='Calculating distances for {}'.format(species_name)):
for sub_sequence in sequences:
d = pw_distance(main_sequence, sub_sequence)
if d != 0.0:
distances.append(d)
max_dist = max(distances)
min_dist = min(distances)
avg_dist = round(mean(distances), 2)
max_dist_list.append(max_dist)
min_dist_list.append(min_dist)
avg_dist_list.append(avg_dist)
else:
max_dist_list.append('')
min_dist_list.append('')
avg_dist_list.append('')
## GBIF LINK
if create_gbif_link == True:
if species_name != "nan":
res = gbif_requester(species_name)
vernacular_name_list.append(res[0])
gbif_link_list.append(res[1])
else:
vernacular_name_list.append('')
gbif_link_list.append('')
## append remaining values
n_OTUs_list.append(n_OTUs)
n_reads_list.append(n_reads)
n_reads_rel_list.append(n_reads_rel)
rel_occurrence_list.append(rel_occurences)
abs_occurrences_list.append(abs_occurrences)
taxon_list_df["Phylum"] = [i.split("<>")[0] if i.split("<>")[0] != "nan" else "" for i in taxon_list_df["FullName"].values.tolist()]
taxon_list_df["Class"] = [i.split("<>")[1] if i.split("<>")[1] != "nan" else "" for i in taxon_list_df["FullName"].values.tolist()]
taxon_list_df["Order"] = [i.split("<>")[2] if i.split("<>")[2] != "nan" else "" for i in taxon_list_df["FullName"].values.tolist()]
taxon_list_df["Family"] = [i.split("<>")[3] if i.split("<>")[3] != "nan" else "" for i in taxon_list_df["FullName"].values.tolist()]
taxon_list_df["Genus"] = [i.split("<>")[4] if i.split("<>")[4] != "nan" else "" for i in taxon_list_df["FullName"].values.tolist()]
taxon_list_df["Species"] = [i.split("<>")[5] if i.split("<>")[5] != "nan" else "" for i in taxon_list_df["FullName"].values.tolist()]
taxon_list_df.drop('FullName', axis='columns', inplace=True)
taxon_list_df["OTUs"] = n_OTUs_list
taxon_list_df["Reads"] = n_reads_list
taxon_list_df["Reads (%)"] = n_reads_rel_list
taxon_list_df["Occurrence (%)"] = rel_occurrence_list
df_occurrences = pd.DataFrame(abs_occurrences_list, columns=samples)
taxon_list_df = taxon_list_df.join(df_occurrences)
if calc_dist == True:
taxon_list_df["Max. dist."] = max_dist_list
taxon_list_df["Min. dist."] = min_dist_list
taxon_list_df["Avg. dist."] = avg_dist_list
if create_gbif_link == True:
taxon_list_df["Vernacular name"] = vernacular_name_list
taxon_list_df["GBIF link"] = gbif_link_list
##############################################################################
taxon_list_df.to_excel(output_xlsx, sheet_name = 'Taxa', index=False)
answer = sg.PopupYesNo("Open taxon list?")
if answer == "Yes":
open_table(output_xlsx)
closing_text = "Taxon list is found under:\n" + '/'.join(str(output_xlsx).split("/")[-4:])
sg.Popup(closing_text, title="Finished", keep_on_top=True)
from taxontabletools.create_log import ttt_log
ttt_log("taxon list", "analysis", TaXon_table_xlsx.name, output_xlsx.name, "", path_to_outdirs)