-
Notifications
You must be signed in to change notification settings - Fork 1
/
M-143-Exponential.tex
208 lines (112 loc) · 7.25 KB
/
M-143-Exponential.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
\documentclass[10pt]{article}
% The following command leaves more space between lines. That's great
% when correcting drafts. When you comment it out, however, the
% output looks much nicer.
%
\linespread{1.0}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{epsfig}
\usepackage{latexsym}
\usepackage{amsthm}
\usepackage{mathrsfs}
\usepackage{multicol}
\usepackage[colorlinks,citecolor=blue]{hyperref}
\usepackage[latin1]{inputenc}
\usepackage{tikz-cd}
\usepackage{pgfplots}
%\usepackage{3dplot}
\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
\usepackage[scale=0.8]{geometry}
%\usepackage{umoline}\setlength{\UnderlineDepth}{1pt}
%\usepackage[linktocpage=true]{hyperref}
\input xy
\xyoption{all}
%\addtolength{\hoffset}{-.5in}
%\addtolength{\textwidth}{1in}
%\setlength{\parindent}{.5in}
%\setlength{\textheight}{9.5in} \setlength{\topmargin}{-2cm}
\pagestyle{myheadings}\parindent 0em
\usepackage[latin1]{inputenc}
%------------------copy and posted code from the internets-------------
%\numberwithin{equation}{section} % comment out when neccessary
\newtheorem{theorem}[equation]{Theorem}
\newtheorem{lemma}[equation]{Lemma}
\newtheorem{proposition}[equation]{Proposition}
\newtheorem{corollary}[equation]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[equation]{Definition}
\newtheorem{example}[equation]{Example}
\newtheorem{remark}[equation]{Remark}
\newtheorem{problem}[equation]{Problem}
\newcommand{\R}[1]{\mathbb{R}^{#1}}
\newcommand{\C}[1]{\mathbb{C}^{#1}}
\newcommand{\Z}[1]{\mathbb{Z}^{#1}}
\newcommand{\K}[1]{\mathbb{K}^{#1}}
\newcommand{\embed}[0]{\hookrightarrow}
\newcommand{\TT}[4]{\begin{tabular}{| c | c |}\hline $#1$ & $#2$ \\ \hline $#3$ & $#4$ \\ \hline\end{tabular}} %goddamn it
\newcommand{\partd}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\limit}[2]{\displaystyle{ \lim_{#1 \to #2}}}
\newcommand{\vectornorm}[1]{\left|\left|#1\right|\right|}
\newcommand{\Ker}[0]{\text{\textnormal{Ker}}}
\newcommand{\Hom}[0]{\text{\textnormal{Hom}}}
\newcommand{\circled}[1]{\tikz[baseline=(char.base)]{
\node[shape=circle,draw,inner sep=2pt] (char) {#1};}}
\newcommand{\T}{\rotatebox[origin=c]{180}{$\scriptscriptstyle \perp $}}
\newcommand{\x}{\textbf{x}}
\newcommand{\y}{\textbf{y}}
\newcommand{\supp}{\text{\textnormal{supp}}}
\newcommand{\csupp}{\text{\textnormal{cosupp}}}
\newcommand{\found}{\text{\textnormal{found}}}
\newcommand{\roof}{\text{\textnormal{roof}}}
\newcommand{\bcup}{\displaystyle\bigcup}
\newcommand{\bcap}{\displaystyle\bigcap}
\newcommand{\dsum}{\displaystyle\sum}
\newcommand{\dint}{\displaystyle\int}
\begin{document}
%
{\bf Name:} \hrulefill\hrulefill\hrulefill\\
{\bf M143} \qquad \qquad \\
{\bf Exponential and Logarithmic Functions}\\ %(look familiar??)\\
%Show all work for full/partial credit.
%---------------- End of the document ---------------
\section{Exponential}
\begin{definition}
An \textbf{exponential function} is a function $f(x)$ which may be written as $f(x)=b\cdot a^x$.
\end{definition}
We should note that we've seen exponential functions before, in the guise of compound interest. If the future value of a debt is $S=P(1+i)^x$ after $x$ unites of time, then $P$ is your $b$ and $1+i$ is your $a$.\\
We should also note that there is a real kinship between exponential functions and linear functions. Linear functions have the form $\ell(x)=mx+b$, which we can think of as $\ell(x)=\overbrace{m+m+\cdots+m}^x+b$, with $x$ copies of $m$. Similarly we can see that $f(x)=b\cdot a^x=\overbrace{a\cdot a\cdots a}^x\cdot b$, so it is really the multiplicative analogue of the linear function, where the $b$'s are the initial value of the function when $x=0$ and the growth rate of the function is totally determined by $a$ (whereas it's determined by $m$ for linear functions).\\
In that way, we can also tell when $f(x)=b\cdot a^x$ is increasing or decreasing, just by looking at whether or not $a>1$ or $a<1$. If $a>1$ it is increasing: \url{https://www.desmos.com/calculator/edktzphc6x} if $a<1$ then it's decreasing: \url{https://www.desmos.com/calculator/rpiu9qc4ty}.\\
Exponential functions are used to model anything that grows or decays proportionately to it's current value. So for example debts or investment accrue proportionately to how much debt/investment there already is. Population is another example, the greater the population, the more reproduction there will be within that population and the greater the increase in population.
\section{Logarithmic}
So looking at any exponential function, but specifically for increasing ones, we notice that they are 1-1, meaning two different inputs give you 2 different outputs. Thus, $f(x)=a^x$ is an invertible function. You can see in these graphs \url{https://www.desmos.com/calculator/cvriy608bg} that reflecting the exponential over the $y=x$ line giving us the green function is another function. We call this function $\log_a(x)$. As the inverse of an exponential function, it has some properties:
\begin{itemize}
\item \textbf{It's domain is only positive numbers}. Why? Because the only possible outputs of exponential outputs are positive numbers. Taking the inverse reverses the roles of the domain and range, and so the domain of $\log_a$ is the positives.
\item \textbf{As $\mathbf{x}$ goes to 0, $ \mathbf{\log_a(x)}$ goes to $\mathbf{-\infty}$.} This is the result of the reflection. Normally $a^x$ (for $a>1$) goes to 0 as $x\to -\infty$, so when reflected, that line is now asymptotic to the $y$-axis. Also $\log_a$ returns the power necessary to achieve the value $x$. If $x$ is a small number like 0.0001, what power would I have to raise $a$ to to get $0.0001$? It can't be 0, $a^0=1$, so it has to be \textbf{less} than 0, and the smaller $x$ is, the lower this power must go.
\item As $\mathbf{x\to\infty, \log_a(x)\to \infty}$, again this is the result of the reflection, but we can also think of this as the powers $a$ needs to be raised to in order to achieve $x$, as this increases, those powers must increase as well.
\item $\log_a(xy)=\log_a(x)+\log_a(y)$. Too see this consider:
\begin{eqnarray*}
xy&=&a^{\log_a{xy}}\\
xy&=&x\cdot y\\
&=&a^{\log_a(x)}\cdot a^{\log_a(y)}\\
&=&a^{\log_a(x)+\log_a(y)}.
\end{eqnarray*}
\item $\log_a(x^y)=y\log_a(x)$. To see this, consider:
\begin{eqnarray*}
x^y&=&a^{\log_a(x^y)}.\\
x^y&=&(a^{\log_a(x)})^y\\
&=&a^{y\log_a(x)}
\end{eqnarray*}
\end{itemize}
Typically most textbooks include a whole bunch of other arithmetic rules, but they can all be distilled from the 2 above so they're all totally pointless.\\
Special cases of logs are log base 10 which is usually just denoted $\log$ and log based $e$, which is denoted $\ln$. Astronomers and other scientists like $\log$ since taking $\log$ base 10 gives you approximate magnitude of stuff. As a mathematician, I prefer $\ln$ since $e$ has pretty special mathematical properties, plus it's shorter, which makes it better.\\
The main use of logs algebraically is to de-exponentiate expressions. So if one is trying to solve $10=2^x$, we could do this via:
\begin{eqnarray*}
10&=&2^x\\
\ln(10)&=&\ln(2^x)\\
\ln(10)&=&x\ln(2)\\
x&=&\frac{\ln(10)}{\ln(2)}\approx 3.3219.
\end{eqnarray*}
One can also solve problems like this visually: \url{https://www.desmos.com/calculator/t0pojr0gel}.
\end{document}