-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
MillerRabinPrimalityChecker.cs
83 lines (72 loc) · 2.92 KB
/
MillerRabinPrimalityChecker.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
using System;
using System.Numerics;
namespace Algorithms.Numeric;
/// <summary>
/// https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
/// The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test:
/// an algorithm which determines whether a given number is likely to be prime,
/// similar to the Fermat primality test and the Solovay–Strassen primality test.
/// It is of historical significance in the search for a polynomial-time deterministic primality test.
/// Its probabilistic variant remains widely used in practice, as one of the simplest and fastest tests known.
/// </summary>
public static class MillerRabinPrimalityChecker
{
/// <summary>
/// Run the probabilistic primality test.
/// </summary>
/// <param name="n">Number to check.</param>
/// <param name="rounds">Number of rounds, the parameter determines the accuracy of the test, recommended value is Log2(n).</param>
/// <param name="seed">Seed for random number generator.</param>
/// <returns>True if is a highly likely prime number; False otherwise.</returns>
/// <exception cref="ArgumentException">Error: number should be more than 3.</exception>
public static bool IsProbablyPrimeNumber(BigInteger n, BigInteger rounds, int? seed = null)
{
Random rand = seed is null
? new()
: new(seed.Value);
return IsProbablyPrimeNumber(n, rounds, rand);
}
private static bool IsProbablyPrimeNumber(BigInteger n, BigInteger rounds, Random rand)
{
if (n <= 3)
{
throw new ArgumentException($"{nameof(n)} should be more than 3");
}
// Input #1: n > 3, an odd integer to be tested for primality
// Input #2: k, the number of rounds of testing to perform, recommended k = Log2(n)
// Output: false = “composite”
// true = “probably prime”
// write n as 2r·d + 1 with d odd(by factoring out powers of 2 from n − 1)
BigInteger r = 0;
BigInteger d = n - 1;
while (d % 2 == 0)
{
r++;
d /= 2;
}
// as there is no native random function for BigInteger we suppose a random int number is sufficient
int nMaxValue = (n > int.MaxValue) ? int.MaxValue : (int)n;
BigInteger a = rand.Next(2, nMaxValue - 2); // ; pick a random integer a in the range[2, n − 2]
while (rounds > 0)
{
rounds--;
var x = BigInteger.ModPow(a, d, n);
if (x == 1 || x == (n - 1))
{
continue;
}
BigInteger tempr = r - 1;
while (tempr > 0 && (x != n - 1))
{
tempr--;
x = BigInteger.ModPow(x, 2, n);
}
if (x == n - 1)
{
continue;
}
return false;
}
return true;
}
}