-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
BellmanFord.cs
119 lines (104 loc) · 3.28 KB
/
BellmanFord.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
using System;
using System.Collections.Generic;
using DataStructures.Graph;
namespace Algorithms.Graph;
/// <summary>
/// Bellman-Ford algorithm on directed weighted graph.
/// </summary>
/// <typeparam name="T">Generic type of data in the graph.</typeparam>
public class BellmanFord<T>
{
private readonly DirectedWeightedGraph<T> graph;
private readonly Dictionary<Vertex<T>, double> distances;
private readonly Dictionary<Vertex<T>, Vertex<T>?> predecessors;
public BellmanFord(DirectedWeightedGraph<T> graph, Dictionary<Vertex<T>, double> distances, Dictionary<Vertex<T>, Vertex<T>?> predecessors)
{
this.graph = graph;
this.distances = distances;
this.predecessors = predecessors;
}
/// <summary>
/// Runs the Bellman-Ford algorithm to find the shortest distances from the source vertex to all other vertices.
/// </summary>
/// <param name="sourceVertex">Source vertex for shortest path calculation.</param>
/// <returns>
/// A dictionary containing the shortest distances from the source vertex to all other vertices.
/// If a vertex is unreachable from the source, it will have a value of double.PositiveInfinity.
/// </returns>
public Dictionary<Vertex<T>, double> Run(Vertex<T> sourceVertex)
{
InitializeDistances(sourceVertex);
RelaxEdges();
CheckForNegativeCycles();
return distances;
}
private void InitializeDistances(Vertex<T> sourceVertex)
{
foreach (var vertex in graph.Vertices)
{
if (vertex != null)
{
distances[vertex] = double.PositiveInfinity;
predecessors[vertex] = null;
}
}
distances[sourceVertex] = 0;
}
private void RelaxEdges()
{
int vertexCount = graph.Count;
for (int i = 0; i < vertexCount - 1; i++)
{
foreach (var vertex in graph.Vertices)
{
if (vertex != null)
{
RelaxEdgesForVertex(vertex);
}
}
}
}
private void RelaxEdgesForVertex(Vertex<T> u)
{
foreach (var neighbor in graph.GetNeighbors(u))
{
if (neighbor == null)
{
continue;
}
var v = neighbor;
var weight = graph.AdjacentDistance(u, v);
if (distances[u] + weight < distances[v])
{
distances[v] = distances[u] + weight;
predecessors[v] = u;
}
}
}
private void CheckForNegativeCycles()
{
foreach (var vertex in graph.Vertices)
{
if (vertex != null)
{
CheckForNegativeCyclesForVertex(vertex);
}
}
}
private void CheckForNegativeCyclesForVertex(Vertex<T> u)
{
foreach (var neighbor in graph.GetNeighbors(u))
{
if (neighbor == null)
{
continue;
}
var v = neighbor;
var weight = graph.AdjacentDistance(u, v);
if (distances[u] + weight < distances[v])
{
throw new InvalidOperationException("Graph contains a negative weight cycle.");
}
}
}
}