-
Notifications
You must be signed in to change notification settings - Fork 0
/
atm_presentation.tex
278 lines (271 loc) · 9.49 KB
/
atm_presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
% Created 2017-03-29 Wed 08:47
% Intended LaTeX compiler: pdflatex
\documentclass[presentation]{beamer}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{grffile}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usetheme{default}
\author{Logan Woodbury}
\date{\textit{[2017-03-21 Tue]}}
\title{Alternation Turing Machines}
\hypersetup{
pdfauthor={Logan Woodbury},
pdftitle={Alternation Turing Machines},
pdfkeywords={},
pdfsubject={A presentation on Alternating Turing Machines},
pdfcreator={Emacs 24.5.1 (Org mode 9.0.5)},
pdflang={English}}
\begin{document}
\maketitle
\begin{frame}{Outline}
\tableofcontents
\end{frame}
\begin{block}{Outline}
\begin{block}{Nondeterministic Turing Machines}
\end{block}
\begin{block}{Alternation}
\end{block}
\begin{block}{ATIME and ASPACE}
\end{block}
\begin{block}{\(\Sigma_{\text{i}}\)-alternating Turing Machines and \(\Pi_{\text{i}}\)-alternating Turing Machines}
\end{block}
\end{block}
\begin{frame}[label={sec:org950a81c}]{Nondeterministic Turing Machines}
\begin{block}{Basic Idea}
\begin{block}{Deterministic Finite Automata \(\rightarrow\) Nondeterministic Finite Automata}
\end{block}
\end{block}
\begin{block}{Basic Idea}
\begin{block}{Deterministic Finite Automata \(\rightarrow\) Nondeterministic Finite Automata}
\end{block}
\begin{block}{Turing Machine \(\rightarrow\) ?}
\end{block}
\end{block}
\begin{block}{Basic Idea}
\begin{block}{Deterministic Finite Automata \(\rightarrow\) Nondeterministic Finite Automata}
\end{block}
\begin{block}{Turing Machine \(\rightarrow\) Nondeterministic Turing Machine}
\end{block}
\end{block}
\begin{block}{Basic Idea}
\begin{block}{Deterministic Finite Automata \(\rightarrow\) Nondeterministic Finite Automata}
\end{block}
\begin{block}{Turing Machine \(\rightarrow\) Nondeterministic Turing Machine}
\end{block}
\begin{block}{P \(\rightarrow\) NP}
\end{block}
\end{block}
\begin{block}{Formal Description}
\begin{block}{\(M = (Q,\Sigma,\iota,\_,A,\delta)\)}
\begin{block}{\(Q\) is the set of states}
\end{block}
\begin{block}{\(\Sigma\) is the Tape Alphabet}
\end{block}
\begin{block}{\(\iota\) is the initial state: \(\iota \in Q\)}
\end{block}
\begin{block}{\(\_\) is the blank symbol: \(\_ \in \Sigma\)}
\end{block}
\begin{block}{\(A\) is the set of accept states: \(A \in Q\)}
\end{block}
\begin{block}{\(\delta\) is the transition function: \(\delta \subset (Q \backslash A x \Sigma) \rightarrow P(Q x \Sigma x \{L,R\})\)}
\end{block}
\end{block}
\end{block}
\begin{block}{Example: SAT}
\begin{block}{Assign all possible assignments of variables concurrently}
\end{block}
\begin{block}{Check if any of them evaluate to true\ldots{} concurrently!}
\end{block}
\begin{block}{If you find one that does, accept!}
\end{block}
\end{block}
\end{frame}
\begin{frame}[label={sec:orgf916c10}]{Alternation}
\begin{block}{Basic Idea}
\begin{block}{NTMs are kinda\ldots{} easy to please?}
\end{block}
\end{block}
\begin{block}{Basic Idea}
\begin{block}{NTMs are kinda\ldots{} easy to please?}
\end{block}
\begin{block}{All states are logical "or's"}
\end{block}
\end{block}
\begin{block}{Basic Idea}
\begin{block}{How about we have a system where we could have alternating or's and and's?}
\end{block}
\end{block}
\begin{block}{Basic Idea}
\begin{center}
\includegraphics[width=.9\linewidth]{./atm_tree.png}
\end{center}
\end{block}
\begin{block}{Basic Idea}
\begin{block}{Turing Machines \(\rightarrow\) Nondeterministic Turing Machines \(\rightarrow\) Alternating Turing Machines}
\end{block}
\begin{block}{P \(\rightarrow\) NP \(\rightarrow\) AP}
\end{block}
\end{block}
\begin{block}{Formal Description}
\begin{block}{\(M = (Q,\Gamma,\delta,q_{0},g)\)}
\begin{block}{\(Q\) is the still set of states}
\end{block}
\begin{block}{\(\Gamma\) is now the Tape Alphabet}
\end{block}
\begin{block}{\(\delta\) is still the transition function: \(\delta : (Q x \Sigma) \rightarrow P(Q x \Gamma x \{L,R\})\)}
\end{block}
\begin{block}{\(q_{0}\) is now the initial state: \(q_{0} \in Q\)}
\end{block}
\begin{block}{\(g\) is a function that specifies the \emph{type} of each state \(g : Q \rightarrow \{\land,\lor,accept,reject\}\)}
\end{block}
\end{block}
\end{block}
\begin{block}{Examples: TAUT (Tautology)}
\begin{block}{\(TAUT = \{\langle \Phi \rangle | \Phi\) is a tautology\(\}\)}
\begin{block}{Universally select all possible assignments to the variables of \(\Phi\) (\(\land\))}
\end{block}
\begin{block}{Evaluate these assignments to see if they are true}
\end{block}
\begin{block}{If all the assignments accept, accept! Otherwise\ldots{} reject!}
\end{block}
\end{block}
\end{block}
\begin{block}{Examples: SEXY}
\begin{block}{L = $\backslash${S | S is a series of 1's in a positive multiple of 3, followed by an even amount of 0's, or the inverse (3x 0's followed by 2y 1's)$\backslash$}}
\end{block}
\begin{block}{Spent a lot of time on this one!}
\end{block}
\begin{block}{Not exactly a particularly difficult problem to solve anyhow, but\ldots{}}
\end{block}
\end{block}
\begin{block}{Examples: MIN-FORMULA}
\begin{block}{\(MIN-FORMULA = \{\langle \Phi \rangle | \Phi\) is the smallest possible way to express that formula\(\}\)}
\begin{block}{\emph{Universally} select all formulas \(\psi\) that are shorter than \(\Phi\) (\(\land\))}
\end{block}
\begin{block}{\emph{Existentially} select an assignment to the variables of \(\Phi\) (\(\lor\))}
\end{block}
\begin{block}{Evaluate both \(\Phi\) and \(\psi\), accept if they have the same values, otherwise reject!}
\end{block}
\end{block}
\end{block}
\end{frame}
\begin{frame}[label={sec:org6ea825d}]{ATIME and ASPACE}
\begin{block}{TIME and (Relative Dimension In) SPACE}
\begin{center}
\includegraphics[width=.9\linewidth]{./tardis.jpg}
\end{center}
\end{block}
\begin{block}{ATIME and ASPACE (ATARDIAS?)}
\begin{block}{\(ATIME(t(n)) = \{L|L\) is decided by an \(O(t(n))\) time alternating Turing Machine \(\}\)}
\end{block}
\begin{block}{\(ASPACE(f(n)) = \{L|L\) is decided by an \(O(f(n))\) space alternating Turing Machine \(\}\)}
\end{block}
\end{block}
\begin{block}{Relations!}
\begin{block}{For \(f(n) \ge n\), we have \(ATIME(f(n)) \subseteq SPACE(f(n)) \subseteq ATIME(f^{2}(n))\)}
\end{block}
\begin{block}{For \(f(n) \ge \log n\), we have \(ASPACE(f(n)) = TIME(2^{O(f(n))})\)}
\end{block}
\end{block}
\end{frame}
\begin{frame}[label={sec:orgfcecea4}]{\(\Sigma_{\text{i}}\)-alternating Turing Machines and \(\Pi_{\text{i}}\)-alternating Turing Machines}
\begin{block}{Definitions}
\begin{block}{\$\(\Sigma_{\text{i}}\)\$-alternating Turing machine is an alternating Turing machine that on the longest possible branch has \(i runs\) universal or existential steps}
\end{block}
\begin{block}{\$\(\Sigma_{\text{i}}\)\$-alternating Turing machines start with existential steps}
\end{block}
\begin{block}{\$\(\Pi_{\text{i}}\)\$-alternating Turing machines start with universal steps}
\end{block}
\end{block}
\begin{block}{\(\Sigma_{\text{i}}\)TIME, \(\Pi_{\text{i}}\)TIME, \(\Sigma_{\text{i}}\)SPACE, \(\Pi_{\text{i}}\)SPACE}
\begin{block}{\ldots{}Not hard to figure out what all these are}
\end{block}
\end{block}
\begin{block}{\(\Sigma_{i}P\) and \(\Pi _{i}P\)}
\begin{block}{\(\Sigma_{i}P = \cup_{k \in \Re} \Sigma_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(\Pi_{i}P = \cup_{k \in \Re} \Pi_{i}TIME(n^{k})\)}
\end{block}
\end{block}
\begin{block}{\(\Sigma_{i}P\) and \(\Pi _{i}P\)}
\begin{block}{\(\Sigma_{i}P = \cup_{k \in \Re} \Sigma_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(\Pi_{i}P = \cup_{k \in \Re} \Pi_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(\Sigma_{1}P\)}
\end{block}
\end{block}
\begin{block}{\(\Sigma_{i}P\) and \(\Pi _{i}P\)}
\begin{block}{\(\Sigma_{i}P = \cup_{k \in \Re} \Sigma_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(\Pi_{i}P = \cup_{k \in \Re} \Pi_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(NP = \Sigma_{1}P\)}
\end{block}
\end{block}
\begin{block}{\(\Sigma_{i}P\) and \(\Pi _{i}P\)}
\begin{block}{\(\Sigma_{i}P = \cup_{k \in \Re} \Sigma_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(\Pi_{i}P = \cup_{k \in \Re} \Pi_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(NP = \Sigma_{1}P\)}
\end{block}
\begin{block}{\(coNP = \Pi_{1}P\)}
\end{block}
\end{block}
\begin{block}{\(\Sigma_{i}P\) and \(\Pi _{i}P\)}
\begin{block}{\(\Sigma_{i}P = \cup_{k \in \Re} \Sigma_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(\Pi_{i}P = \cup_{k \in \Re} \Pi_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(NP = \Sigma_{1}P\)}
\end{block}
\begin{block}{\(coNP = \Pi_{1}P\)}
\end{block}
\begin{block}{\(MIN-FORMULA \in \Pi_{2}P\)}
\end{block}
\end{block}
\begin{block}{\(\Sigma_{i}P\) and \(\Pi _{i}P\)}
\begin{block}{\(\Sigma_{i}P = \cup_{k \in \Re} \Sigma_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(\Pi_{i}P = \cup_{k \in \Re} \Pi_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(NP = \Sigma_{1}P\)}
\end{block}
\begin{block}{\(coNP = \Pi_{1}P\)}
\end{block}
\begin{block}{\(MIN-FORMULA \in \Pi_{2}P\)}
\end{block}
\begin{block}{\(SEXY \in \Sigma_{3}P\)}
\end{block}
\end{block}
\begin{block}{\(\Sigma_{i}P\) and \(\Pi _{i}P\)}
\begin{block}{\(\Sigma_{i}P = \cup_{k \in \Re} \Sigma_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(\Pi_{i}P = \cup_{k \in \Re} \Pi_{i}TIME(n^{k})\)}
\end{block}
\begin{block}{\(NP = \Sigma_{1}P\)}
\end{block}
\begin{block}{\(coNP = \Pi_{1}P\)}
\end{block}
\begin{block}{\(MIN-FORMULA \in \Pi_{2}P\)}
\end{block}
\begin{block}{\(SEXY \in \Sigma_{3}P\)}
\end{block}
\begin{block}{(It is also most definitely in P)}
\end{block}
\end{block}
\end{frame}
\begin{frame}[label={sec:org6a9fcd6}]{Conclusion}
\end{frame}
\end{document}