forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
47 lines (39 loc) · 1.65 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import math
class ArcFace(torch.nn.Module):
""" ArcFace (https://arxiv.org/pdf/1801.07698v1.pdf):
"""
def __init__(self, s=64.0, margin=0.5):
super(ArcFace, self).__init__()
self.scale = s
self.cos_m = math.cos(margin)
self.sin_m = math.sin(margin)
self.theta = math.cos(math.pi - margin)
self.sinmm = math.sin(math.pi - margin) * margin
self.easy_margin = False
def forward(self, logits: torch.Tensor, labels: torch.Tensor):
index = torch.where(labels != -1)[0]
target_logit = logits[index, labels[index].view(-1)]
sin_theta = torch.sqrt(1.0 - torch.pow(target_logit, 2))
cos_theta_m = target_logit * self.cos_m - sin_theta * self.sin_m # cos(target+margin)
if self.easy_margin:
final_target_logit = torch.where(
target_logit > 0, cos_theta_m, target_logit)
else:
final_target_logit = torch.where(
target_logit > self.theta, cos_theta_m, target_logit - self.sinmm)
logits[index, labels[index].view(-1)] = final_target_logit
logits = logits * self.scale
return logits
class CosFace(torch.nn.Module):
def __init__(self, s=64.0, m=0.40):
super(CosFace, self).__init__()
self.s = s
self.m = m
def forward(self, logits: torch.Tensor, labels: torch.Tensor):
index = torch.where(labels != -1)[0]
target_logit = logits[index, labels[index].view(-1)]
final_target_logit = target_logit - self.m
logits[index, labels[index].view(-1)] = final_target_logit
logits = logits * self.s
return logits