-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate_task.py
474 lines (426 loc) · 16.6 KB
/
evaluate_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import argparse
import gc
from pathlib import Path
from typing import Literal
import warnings
import torch
from torch.utils.data import DataLoader
from accelerate import PartialState, Accelerator
from src.configs import config
from src.configs.config import RootConfig
from src.configs.generation_config import GenerationConfig
from src.engine import train_util
from src.evaluation import *
from src.models import model_util
from src.models.spm import SPMLayer, SPMNetwork
from src.models.merge_spm import load_state_dict
from src.misc.sld_pipeline import SLDPipeline
DIFFUSERS_CACHE_DIR = ".cache/"
UNET_NAME = "unet"
TEXT_ENCODER_NAME = "text_encoder"
MATCHING_METRICS = Literal[
"clipcos",
"clipcos_tokenuni",
"tokenuni",
"allone",
]
distributed_state = PartialState()
accelerator = Accelerator()
def flush():
torch.cuda.empty_cache()
gc.collect()
def parse_extra_args(extra_args):
if extra_args is None or extra_args == ['']:
return {}
extra_args_dict = {}
for extra_arg in extra_args:
key, value = extra_arg.split("=")
# convert value to various types
if value.isdigit():
value = int(value)
elif value.replace(".", "", 1).isdigit():
value = float(value)
elif value[0] == "[" and value[-1] == "]":
value = [i.replace('+', ' ') for i in value[1:-1].split(",")]
value = [v.strip() for v in value]
if value[0].isdigit():
value = [int(v) for v in value]
elif value[0].replace(".", "", 1).isdigit():
value = [float(v) for v in value]
extra_args_dict[key] = value
return extra_args_dict
def get_dataloader(args, num_processes=1):
# parse task_args arguments
task_args = parse_extra_args(args.task_args)
task_args["save_folder"] = args.img_save_path
task_args["output_path"] = args.save_path
# parse generation arguments
cfg = parse_extra_args(args.generation_cfg)
cfg = GenerationConfig(**cfg)
dataset_class = None
if args.task == "general":
dataset_class = ClipTemplateDataset
elif args.task == "artwork":
dataset_class = ArtworkDataset
elif args.task == "i2p":
dataset_class = I2PDataset
elif args.task == "coco":
dataset_class = Coco30kGenerationDataset
else:
raise ValueError(f"Unknown task: {args.task}")
dataset = dataset_class(**task_args, base_cfg=cfg)
dataloader = DataLoader(dataset, batch_size=num_processes, num_workers=0, shuffle=False)
return dataloader
def get_evaluator(args):
evaluator_class = None
if args.task == "general":
evaluator_class = ClipEvaluator
elif args.task == "artwork":
evaluator_class = ArtworkEvaluator
elif args.task == "i2p":
evaluator_class = I2PEvaluator
elif args.task == "coco":
evaluator_class = CocoEvaluator
else:
raise ValueError(f"Unknown task: {args.task}")
evaluator = evaluator_class(
save_folder=args.img_save_path, output_path=args.save_path
)
return evaluator
def calculate_matching_score(
prompt_tokens,
prompt_embeds,
erased_prompt_tokens,
erased_prompt_embeds,
matching_metric: MATCHING_METRICS,
special_token_ids: set[int],
weight_dtype: torch.dtype = torch.float32,
):
scores = []
if "allone" in matching_metric:
scores.append(torch.ones(prompt_embeds.shape[0]).to("cpu", dtype=weight_dtype))
if "clipcos" in matching_metric:
clipcos = torch.cosine_similarity(
prompt_embeds.flatten(1, 2), erased_prompt_embeds.flatten(1, 2), dim=-1
).cpu()
scores.append(clipcos)
if "tokenuni" in matching_metric:
prompt_set = set(prompt_tokens[0].tolist()) - special_token_ids
tokenuni = []
for ep in erased_prompt_tokens:
ep_set = set(ep.tolist()) - special_token_ids
tokenuni.append(len(prompt_set.intersection(ep_set)) / len(ep_set))
scores.append(torch.tensor(tokenuni).to("cpu", dtype=weight_dtype))
return torch.max(torch.stack(scores), dim=0)[0]
@torch.no_grad()
def infer_with_spm(
dataloader: DataLoader,
spm_paths: list[str],
matching_metric: MATCHING_METRICS,
facilitate_factor: float = 1.0,
assigned_multipliers: list[float] = None,
finetuned_model_path: str = None,
sld_target_concept: str = None,
base_model: str = "CompVis/stable-diffusion-v1-4",
v2: bool = False,
precision: str = "fp32",
):
spm_model_paths = [
lp / f"{lp.name}_last.safetensors" if lp.is_dir() else lp for lp in spm_paths
]
weight_dtype = config.parse_precision(precision)
if finetuned_model_path is not None and Path(finetuned_model_path).is_dir():
# folder path for the diffuser model
base_model = finetuned_model_path
print(f"Using models from {base_model}")
# load the pretrained SD
tokenizer, text_encoder, unet, pipe = model_util.load_checkpoint_model(
base_model,
v2=v2,
weight_dtype=weight_dtype,
device=distributed_state.device,
)
special_token_ids = set(
tokenizer.convert_tokens_to_ids(tokenizer.special_tokens_map.values())
)
text_encoder.to(distributed_state.device, dtype=weight_dtype)
text_encoder.eval()
unet.to(distributed_state.device, dtype=weight_dtype)
unet.enable_xformers_memory_efficient_attention()
unet.requires_grad_(False)
unet.eval()
if len(spm_model_paths) > 0:
# load the SPM models
spms, metadatas = zip(
*[
load_state_dict(spm_model_path, weight_dtype)
for spm_model_path in spm_model_paths
]
)
# check if SPMs are compatible
assert all([metadata["rank"] == metadatas[0]["rank"] for metadata in metadatas])
# get the erased concept
erased_prompts = [md["prompts"].split(",") for md in metadatas]
erased_prompts_count = [len(ep) for ep in erased_prompts]
print(f"Erased prompts: {erased_prompts}")
erased_prompts_flatten = [item for sublist in erased_prompts for item in sublist]
erased_prompt_embeds, erased_prompt_tokens = train_util.encode_prompts(
tokenizer, text_encoder, erased_prompts_flatten, return_tokens=True
)
# create the SPM network
network = SPMNetwork(
unet,
rank=int(float(metadatas[0]["rank"])),
alpha=float(metadatas[0]["alpha"]),
module=SPMLayer,
).to(distributed_state.device, dtype=weight_dtype)
if finetuned_model_path is not None:
if finetuned_model_path.endswith('.bin'):
# concept-ablation
st = torch.load(finetuned_model_path, map_location='cpu')
if 'text_encoder' in st:
text_encoder.load_state_dict(st['text_encoder'])
for name, params in unet.named_parameters():
if name in st['unet']:
params.data.copy_(st['unet'][f'{name}'])
elif finetuned_model_path.endswith('.pt'):
# ESD
unet.load_state_dict(torch.load(finetuned_model_path, map_location='cpu'))
elif Path(finetuned_model_path).is_dir():
# SA
pass
elif finetuned_model_path.lower() == 'sld':
# SLD
pipe = SLDPipeline.from_pretrained(
base_model,
safety_checker=None,
cache_dir=DIFFUSERS_CACHE_DIR,
torch_dtype=weight_dtype,
).to(distributed_state.device)
if sld_target_concept.lower() != 'i2p':
pipe.safety_concept = sld_target_concept
print(f"Using SLD to erase target concept: {pipe.safety_concept}")
if len(spm_model_paths) == 0 and finetuned_model_path is None:
warnings.warn("No SPM model or finetuned model is provided, using the pretrained model directly.")
print("Generating images...")
with distributed_state.split_between_processes(dataloader.dataset.data) as dataset:
dataset = tqdm(dataset) if distributed_state.is_main_process else dataset
for cfg in dataset:
# save path checking
folder = Path(cfg['save_path']).parent
if not folder.exists():
folder.mkdir(parents=True, exist_ok=True)
# check whether the image has been generated
if cfg['generate_num'] > 1:
if all([Path(cfg['save_path'].format(idx)).exists() for idx in range(cfg['generate_num'])]):
print(f"Skipping {cfg['save_path']}, already exists.")
continue
else:
if Path(cfg['save_path']).exists():
print(f"Skipping {cfg['save_path']}, already exists.")
continue
prompts = [p + ", " + cfg['unconditional_prompt'] if cfg['unconditional_prompt'] else p for p in cfg['prompts']]
# generate images
if len(spm_model_paths) > 0:
prompt_embeds, prompt_tokens = train_util.encode_prompts(
tokenizer, text_encoder, prompts, return_tokens=True
)
if assigned_multipliers is not None:
multipliers = torch.tensor(assigned_multipliers).to(
"cpu", dtype=weight_dtype
)
matching_metric = "_".join([str(i) for i in assigned_multipliers])
else:
multipliers = calculate_matching_score(
prompt_tokens,
prompt_embeds,
erased_prompt_tokens,
erased_prompt_embeds,
matching_metric=matching_metric,
special_token_ids=special_token_ids,
weight_dtype=weight_dtype,
)
multipliers = torch.split(multipliers, erased_prompts_count)
print(f"multipliers: {multipliers}")
weighted_spm = dict.fromkeys(spms[0].keys())
used_multipliers = []
for spm, multiplier in zip(spms, multipliers):
max_multiplier = torch.max(multiplier)
max_multiplier *= facilitate_factor
for key, value in spm.items():
if weighted_spm[key] is None:
weighted_spm[key] = value * max_multiplier
else:
weighted_spm[key] += value * max_multiplier
used_multipliers.append(max_multiplier.item())
network.load_state_dict(weighted_spm)
with network:
images = pipe(
negative_prompt=cfg['negative_prompt'],
width=cfg['width'],
height=cfg['height'],
num_inference_steps=cfg['num_inference_steps'],
guidance_scale=cfg['guidance_scale'],
generator=torch.cuda.manual_seed(cfg['seed']) if cfg['seed'] else None,
num_images_per_prompt=cfg['generate_num'],
prompt_embeds=prompt_embeds,
).images
elif sld_target_concept:
images = pipe(
prompt=prompts,
negative_prompt=[cfg['negative_prompt']]*len(prompts),
width=cfg['width'],
height=cfg['height'],
num_inference_steps=cfg['num_inference_steps'],
guidance_scale=cfg['guidance_scale'],
generator=torch.cuda.manual_seed(cfg['seed']) if cfg['seed'] else None,
num_images_per_prompt=cfg['generate_num'],
sld_warmup_steps=7,
sld_guidance_scale=2000,
sld_threshold=0.025,
sld_momentum_scale=0.5,
sld_mom_beta=0.7
).images
else:
images = pipe(
prompt=prompts,
negative_prompt=[cfg['negative_prompt']]*len(prompts),
width=cfg['width'],
height=cfg['height'],
num_inference_steps=cfg['num_inference_steps'],
guidance_scale=cfg['guidance_scale'],
generator=torch.cuda.manual_seed(cfg['seed']) if cfg['seed'] else None,
num_images_per_prompt=cfg['generate_num'],
).images
# save generated images
if len(images) > 1:
for idx, image in enumerate(images):
image.save(cfg['save_path'].format(idx))
else:
images[0].save(cfg['save_path'])
def main(args):
# data preparation
spm_paths = [Path(lp) for lp in args.spm_paths] if args.spm_paths else []
print(f"Using {distributed_state.num_processes} processes for evaluation.")
dataloader = get_dataloader(args, num_processes=distributed_state.num_processes)
# inference
if not args.eval_only:
infer_with_spm(
dataloader,
spm_paths=spm_paths,
matching_metric=args.matching_metric,
facilitate_factor=args.facilitate_factor,
assigned_multipliers=args.spm_multiplier,
finetuned_model_path=args.ft_model_path,
sld_target_concept=args.sld_target_concept,
base_model=args.base_model,
v2=args.v2,
precision=args.precision,
)
accelerator.wait_for_everyone()
# evaluation
if not args.gen_only and distributed_state.is_main_process:
evaluator = get_evaluator(args)
evaluator.evaluation()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--task",
required=True,
choices=["general", "artwork", "i2p", "coco"],
help="Task to evaluate.",
)
parser.add_argument(
"--task_args",
nargs="*",
help="""Extra arguments for the task. Acceptable arguments:
task=general: concepts(list[str]), num_templates(optional, int, default=80), num_images_per_template(optional, int, default=10);
task=artwork: datasets(list[str]);
task=i2p: None.
task=coco: None.
""",
)
parser.add_argument(
"--generation_cfg",
nargs="*",
help="Arguments to overwrite default generation configs.",
)
parser.add_argument(
"--img_save_path",
type=str,
required=True,
help="Path to save generated images.",
)
parser.add_argument(
"--save_path",
type=str,
required=True,
help="Path to save evaluation results.",
)
parser.add_argument(
"--spm_paths",
nargs="*",
help="SPM(s) to use.",
)
parser.add_argument(
"--spm_multiplier",
nargs="*",
type=float,
default=None,
help="Assign multipliers for SPM model or use Facilitated Transport.",
)
parser.add_argument(
"--facilitate_factor",
type=float,
default=1.0,
help="Facilitate factor for SPM.",
)
parser.add_argument(
"--matching_metric",
type=str,
default="clipcos_tokenuni",
help="matching metric for prompt vs erased concept",
)
# model configs
parser.add_argument(
"--base_model",
type=str,
default="CompVis/stable-diffusion-v1-4",
help="Base model for generation.",
)
parser.add_argument(
"--v2",
action="store_true",
help="Use the 2.x version of the SD.",
)
parser.add_argument(
"--precision",
type=str,
default="fp32",
help="Precision for the base model.",
)
parser.add_argument(
"--eval_only",
action="store_true",
help="Skip generation and only evaluate the generated images.",
)
parser.add_argument(
"--gen_only",
action="store_true",
help="Skip evaluation and only generate images.",
)
# for comparative study
parser.add_argument(
"--ft_model_path",
default=None,
help=".pt for ESD, .bin for ConAbl, and SLD for SLD.",
)
parser.add_argument(
"--sld_target_concept",
default=None,
help="SLD requires named targets for erasing.",
)
args = parser.parse_args()
if args.ft_model_path and args.ft_model_path.lower() == 'sld' and args.sld_target_concept is None:
raise ValueError("SLD requires named targets for erasing.")
main(args)