forked from testaco/DCP6
-
Notifications
You must be signed in to change notification settings - Fork 1
/
dcp6test2.v
960 lines (960 loc) · 28.7 KB
/
dcp6test2.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
//
// dcp6test2.v - Test DCP-6 PCB with 2 Tuners
//
// (C) Copyright 2012-2013 John B. Stephensen
//
// This Verilog source file and all explicitly and implicitly referenced files and all of their
// derivatives are licensed only for personal non-profit educational use in the Amateur Radio
// Service with the DCP-6 PCB and the license is not transferrable. The information is provided
// as-is for experimental purposes and the author does not warranty its freedom from defects or
// its suitability for any specific application.
//
// Test configuration for DCP-6 and DCP-6A supporting 2 independently tunable channels.
// Memory-mapped I/O with regular LS ADC/DAC port (no test mux.)
//
// ISE 14.6 balanced design goal w/o resamplers or quad FIR filter:
// 11130 LUT6s (74%), 11064 registers (36%), 51 RAM and 25 DSP48 synthesized in XC6SLX25-2.
// 9670 LUT6s (64%) and 10998 registers (36%) implemented with 3362 (89%) slices occupied.
// Compile time appx. 23 min.
//
// ISE 14.6 balanced design goal w/o resamplers:
// 11945 LUT6s (79%), 11168 registers (37%), 51 RAM and 29 DSP48 synthesized in XC6SLX25-2.
// 10370 LUT6s (68%) and 11101 registers (36%) implemented with 3470 (92%) slices occupied.
// Compile time appx. 24 min.
//
// History:
// 2013-3-3 try tuner2 for 2 receive channels
// 2013-3-7 no PTT on tuner1fir
// 2013-3-9 use tuner1 and external ADC peak detect
// 2013-3-13 tuner1 uses CIC4P64 (sep. fir & cic clock domains)
// 2013-3-14 memory-mapped I/O for tuner, AGC, modem and FFT
// 2013-3-20 80 MHz audio CODEC clock (ACLK)
// 2013-3-22 registers ahead of test multiplexer to ease timing req. (was 11351 LUT, 10535 reg)
// 2013-3-24 del. test mux., reg. CE in UART, & add 4-clk delay CIC-FIR (was 11649 LUT, 10844 reg)
// 2013-3-27 change FIFO ready to 60% and bring out for test via FF
// 2013-3-29 12-bit peak ADC detection
// 2013-4-2 FIR with 18x28b multipliers using P outputs and 36b acc. to ease routing
// 2013-4-7 ext. reg. for DDS ROM (was 11866/10426 LUT, 11269/11203 reg)
// 2013-4-13 dual->quad FIR
// 2013-4-14 add 2nd VD (was 12269 LUT, 11385 reg, 44 RAM, 35 DSP)
// 2013-9-17 delete resamplers to reduce size and add 8 kW data RAM for buffers
// 2013-9-20 new carrier detect logic (was 11932 LUT, 11160 reg.)
// 2013-11-16 remove quad FIR filter
//
module dcp6test2 (
input [15:2] ADC, // 14-bit 80 Msps ADC
input OVF, // ADC overflow
input DCO, // ADC clock output
output ADCSCK, // SPI clock
inout ADCSDIO, // SPI bidirectional data
output ADCCSN, // SPI chip select (active low)
output [13:0] DAC, // 14-bit 80 Msps DAC
input CLK, // Master clock at ADC sample rate
input REF, // frequency standard input
output VCXO, // VCXO frequency adjust
input MISO, // Flash master in/slave out
output MOSI, // Flash master out/slave in
output SSN, // Flash slave select (active low)
output SCK, // Flash bit clock
output WPN, // Flash write protect
output HLDN, // Flash hold
input [1:0] RXD, // Ethernet received data
input RXV, // Ethernet received signal valid
output [1:0] TXD, // Ethernet transmit data
output TXV, // Ethernet transmit output valid
output REFCLK, // Ethernet clock
output MDC, // Ethernet management interface clock
inout MDIO, // Ethernet management interface bidirectional data
input MINT, // Ethernet interrupt
output RSTN, // Ethernet PHY reset (active low)
input URXD, // UART received data
output UTXD, // UART transmit data
output UTXE, // UART transmit enable
output GRNLED,REDLED, // active high LEDs
output PTT, // open-drain output
inout [9:0] IO, // GPIO pins
output SCK2, // LS ADC & DAC serial clock
output SDO2, // LS DAC serial data output
input SDI2, // LS ADC serial data input
output SS2N, // LS DAC select (active low)
output SS3N // LS ADC select (active low)
);
// internal signals
wire rst; // reset logic
wire [15:10] msel; // memory bank select
wire [13:0] maddr; // data address (of word)
wire [15:0] min,mout,mio; // data bus (direction referenced to MCU)
wire mrd,mwr; // read from/write to memory
wire mcs1,mcs2,mcs3,mcs4,mcs5; // memory bank selects
reg [13:10] mdosel; // memory output multiplxer port select input
wire [15:0] min1,min2,min3,min4,min5; // memory input ports
wire [7:0] ioaddr; // I/O address bus
wire [15:0] din,dout; // I/O data bus (direction referenced to MCU)
wire iord,iowr; // read and write enables
wire iocs0,iocs1,iocs2,iocs3,iocs4,iocs5,iocs6,iocs7; // CPU I/O port selects
wire iocs8,iocs9,iocs10,iocs11,iocs12,iocs13,iocs14,iocs15a,iocs15b,iocs15c,iocs15d;
wire miocs0,miocs1,miocs2,miocs3,miocs4,miocs5,miocs6,miocs7,miocs8,miocs9;
reg [3:0] isel; // input multiplexer port select input
wire [15:0] din0,din1,din2,din3,din4,din5,din6,din7;
wire [15:0] din8,din9,din10,din11,din12,din13,din15;
wire [15:0] mio0,mio1,mio2,mio3,mio4,mio5,mio6,mio7,mio8,mio9;
//wire esof,erxce,eeof,erxswap; // ethernet test
wire [15:0] mrax,mray,mtax,mtay,mrbx,mrby,mtbx,mtby; // modem data I/O
wire mrav,mtav,mrbv,mtbv; // modem receive and transmit data valid
wire mfae,mfbe; // modem and FFT transmit enable
wire starta,synca,dcda,xmta; // modem outputs for OFDM and T/R switching
wire startb,syncb,dcdb,xmtb;
wire [15:0] frax,fray,ftax,ftay,frbx,frby,ftbx,ftby; // FFT baseband I/O
wire frav,ftav,frbv,ftbv; // data valid
wire ftae,ftbe; // FFT/modem select (0=modem, 1=FFT)
wire [15:0] mftax,mftay,mftbx,mftby; // multiplexed transmit data
wire mftav,mftbv;
wire [19:0] trax,tray,trbx,trby; // tuner baseband output
wire trav,trbv; // data valid
wire [15:0] ttax,ttay,ttbx,ttby; // tuner baseband input
wire ttav,ttbv; // data valid
wire tardy,tbrdy; // ready for data
wire ptta,pttb; // enable transmitter
wire fcda,fcdb; // full carrier detect
// Test signals
wire frdya,frdyb; // FIFO ready for data
//reg testv;
//wire [15:0] x,y,m,t,f; // modem test signals for output on LS DAC
//wire [11:0] p;
//wire xyv,mpv,ftev;
//wire [7:0] x0,y0; // FFT test signals for output on LS DAC
//wire [8:0] w;
//wire [15:0] gaina,gainb; // AGC gain
// generate internal clocks from ADC and DAC clock inputs
wire adcclk,dacclk; // external clock inputs
wire sclk0,sclk,dclk; // tuner clocks
wire mclk0,mclk; // CPU clocks
wire rclk0,rclk; // ethernet clock
wire iq; // I/Q flag (I=1, Q=0)
wire locked1,locked2; // DCM and PLL locked
IBUFG adcclkbuf (.I(DCO), .O(adcclk));
IBUFG dacclkbuf (.I(CLK), .O(dacclk));
DCM_SP #(
.CLKIN_PERIOD(12.5), // 80 MHz input
.CLK_FEEDBACK("1X"),
.CLKFX_MULTIPLY(3), // 48M CPU (-2)
.CLKFX_DIVIDE(5),
// .CLKFX_MULTIPLY(9), // 72M CPU (-3)
// .CLKFX_DIVIDE(10),
.CLKIN_DIVIDE_BY_2("FALSE")
) dcm (
.RST(1'b0), // don't reset
.CLKIN(dacclk), // external clock input
.CLKFB(sclk), // DLL feedback
.CLK0(sclk0), // 80 MHz tuner clock
.CLK90(),
.CLK180(),
.CLK270(),
.CLK2X(dclk0), // 160 MHz tuner clock
.CLK2X180(),
.CLKFX(mclk0), // CPU clock
.CLKFX180(),
.CLKDV(),
.PSEN(1'b0),
.PSINCDEC(1'b0),
.PSCLK(1'b0),
.LOCKED(locked1)
);
wire clkfb; // internal feedback
PLL_BASE #(
.BANDWIDTH("LOW"), // for low jitter
.CLKFBOUT_MULT(10), // 800 MHz VCO -> 80 MHz PFD
.CLKFBOUT_PHASE(0.0),
.CLKIN_PERIOD(12.5), // 80 MHz input
.CLKOUT0_DIVIDE(16), // 800 MHz VCO -> 50 MHz rclk0
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0.0),
.CLK_FEEDBACK("CLKFBOUT"), // minimum jitter
.COMPENSATION("INTERNAL"),
.DIVCLK_DIVIDE(1), // 80 MHz ref -> 80 MHz PFD
.REF_JITTER(0.001), // input is crystal oscillator
.RESET_ON_LOSS_OF_LOCK("FALSE")
) pll (
.RST(1'b0), // don't reset
.CLKIN(dacclk), // external clock input
.CLKFBIN(clkfb), // internal PLL feedback
.CLKFBOUT(clkfb),
.CLKOUT0(rclk0), // ethernet clock output
.LOCKED(locked2)
);
// buffer general clocks
BUFG sclkbuf (.I(sclk0), .O(sclk)); // tuner sample clock
BUFG dclkbuf (.I(dclk0), .O(dclk)); // tuner data clock (2xSCLK)
BUFG mclkbuf (.I(mclk0), .O(mclk)); // CPU clock
BUFG rclkbuf (.I(rclk0), .O(rclk)); // ethernet reference clock
// Buffer Ethernet clock
ODDR2 #(
.DDR_ALIGNMENT("NONE"),
.INIT(1'b0),
.SRTYPE("SYNC")
) refclkbuf (
.D0(1'b1), // data forms single-rate clock
.D1(1'b0),
.C0(rclk), // double data rate clock
.C1(~rclk),
.CE(1'b1),
.R(1'b0),
.S(1'b0),
.Q(REFCLK) // output
);
//OBUF refclkbuf (.I(rclk), .O(REFCLK)); // ethernet clock output
//OBUF refclkbuf (.I(rclk0), .O(REFCLK)); // ethernet clock output
// reset if DCM or PLL output not stable
assign rst = ~locked1 | ~locked2; // general reset
// IQ is used for multiplexing and demultiplexing in-phase and quadrature samples
// it tracks SCLK but changes state after the positive-going edge of DCLK
iqgen iqg (
.sclk(sclk),
.dclk(dclk),
.iq(iq)
);
// test signals
wire [9:5] test;
// right I/O connector
//OBUF t0buf (.I(test[0]), .O(IO[0])); // pin 2
//OBUF t1buf (.I(test[1]), .O(IO[1])); // pin 4
//OBUF t2buf (.I(test[2]), .O(IO[2])); // pin 6
//OBUF t3buf (.I(test[3]), .O(IO[3])); // pin 8
//OBUF t4buf (.I(test[4]), .O(IO[4])); // pin 10
// left I/O connector
OBUF t5buf (.I(test[5]), .O(IO[5])); // pin 2
OBUF t6buf (.I(test[6]), .O(IO[6])); // pin 4
OBUF t7buf (.I(test[7]), .O(IO[7])); // pin 6
OBUF t8buf (.I(test[8]), .O(IO[8])); // pin 8
OBUF t9buf (.I(test[9]), .O(IO[9])); // pin 10
// CPU and DMA use MCLK
CPU16 cpu (
.ioaddr(ioaddr), // I/O address
.din0(din), // I/O input bus (0-7F)
.din1(16'hFFFF),
.iord(iord), // I/O read
.dout(dout), // I/O output bus (all)
.iowr(iowr), // I/O write
.msel(msel), // memory bank select
.maddr(maddr), // memory address
.min1(min), // peripheral memory input bus (4000-7FFF)
.min2(min5), // data memory input bus (8000-BFFF)
.min3(mio), // memory-mapped I/O input bus (C000-FFFF)
.mout(mout), // memory output bus (all)
.mrd(mrd),
.mwr(mwr),
.clk(mclk),
.rst(rst)
);
// External memory input multiplexer supports 4 banks of memory
// read instruction is 2 cycles so select input is latched
always @ (posedge mclk) mdosel <= msel[13:10];
MUX4X16 rammux (
.D0(min1), // 4000-4FFF
.D1(min2), // 5000-5FFF
.D2(min3), // 6000-6FFF
.D3(min4), // 7000-7FFF
.S(mdosel[13:12]),
.Y(min)
);
// Memory bank selects
assign mcs1 = (msel[15:12] == 4'b0100); // 4kW Ethernet RAM
assign mcs2 = (msel[15:12] == 4'b0101); // 4kW Ethernet RAM
assign mcs3 = (msel[15:12] == 4'b0110); // 4kW FFT 1 RAM
assign mcs4 = (msel[15:12] == 4'b0111); // 4kW FFT 2 RAM
assign mcs5 = (msel[15:13] == 3'b100); // 8kW Data RAM
// 8 kW Data Memory - only port A used
ram8kx16dp dataram (
.aa(maddr[12:0]),
.ab(13'hFFFF),
.dia(mout),
.dib(16'hFFFF),
.doa(min5),
.dob(),
.cea(mcs5),
.ceb(1'b0),
.wea(mwr),
.web(1'b0),
.clk(mclk),
.rst(rst)
);
// Memory-mapped input multiplxer supports 16 blocks of 1024 ports
MUX16X16 miomux (
.D0(mio0), // modem 1
.D1(mio1), // FFT 1
.D2(mio2), // Tuner 1
.D3(mio3), // AGC/RSMPL/CLIP 1
.D4(mio4), // modem 2
.D5(mio5), // FFT 2
.D6(mio6), // Tuner 2
.D7(mio7), // AGC/RSMPL/CLIP 2
.D8(mio8), // VD 1
.D9(mio9), // VD 2
.D10(16'hFFFF),
.D11(16'hFFFF),
.D12(16'hFFFF),
.D13(16'hFFFF),
.D14(16'hFFFF),
.D15(16'hFFFF),
.S(mdosel[13:10]), // upper bits of I/O address
.Y(mio) // data to multiplexer in ALU
);
// memory-mapped I/O port selects
assign miocs0 = (msel[15:10] == 6'b110000); // Modem 1
assign miocs1 = (msel[15:10] == 6'b110001); // FFT 1
assign miocs2 = (msel[15:10] == 6'b110010); // Tuner 1
assign miocs3 = (msel[15:10] == 6'b110011); // AGC/RSMPL/CLIP 1
assign miocs4 = (msel[15:10] == 6'b110100); // Modem 2
assign miocs5 = (msel[15:10] == 6'b110101); // FFT 2
assign miocs6 = (msel[15:10] == 6'b110110); // Tuner 2
assign miocs7 = (msel[15:10] == 6'b110111); // AGC/RSMPL/CLIP 2
assign miocs8 = (msel[15:10] == 6'b111000); // VD 1
assign miocs9 = (msel[15:10] == 6'b111001); // VD 2
// I/O port input multiplexers support 16 blocks of 8 input ports
always @ (posedge mclk) isel <= ioaddr[6:3]; // 16x8 ports per mux
MUX16X16 imux (
.D0(din0), // Ethernet
.D1(din1), // Serial Flash
.D2(din2), // Convolutional Encoder
.D3(16'hFFFF), // unused
.D4(din4), // UART
.D5(din5), // FIR
.D6(din6), // I2S
.D7(din7), // CRC
.D8(16'hFFFF), // unused
.D9(16'hFFFF), // unused
.D10(din10), // BP(4,3,7) CODEC
.D11(16'hFFFF), // unused
.D12(16'hFFFF), // unused
.D13(din13), // LS ADC & DAC
.D14(16'hFFFF), // unused
.D15(din15), // ADC peak detect
.S(isel), // upper bits of I/O address
.Y(din) // data to multiplexer in ALU
);
// I/O port selects - 16 blocks of 8
assign iocs0 = (ioaddr[6:3] == 0); // Ethernet
assign iocs1 = (ioaddr[6:3] == 1); // SPI
assign iocs2 = (ioaddr[6:3] == 2); // Convolutional Encoder
//assign iocs3 = (ioaddr[6:3] == 3); // unused
assign iocs4 = (ioaddr[6:3] == 4); // UART
assign iocs5 = (ioaddr[6:3] == 5); // FIR
assign iocs6 = (ioaddr[6:3] == 6); // I2S
assign iocs7 = (ioaddr[6:3] == 7); // CRC
//assign iocs8 = (ioaddr[6:3] == 8); // unused
//assign iocs9 = (ioaddr[6:3] == 9); // unused
assign iocs10 = (ioaddr[6:3] == 10); // BP(4,3,7) CODEC
//assign iocs11 = (ioaddr[6:3] == 11); // unused
//assign iocs12 = (ioaddr[6:3] == 12); // unused
assign iocs13 = (ioaddr[6:3] == 13); // LS ADC & DAC
//assign iocs14 = (ioaddr[6:3] == 14); // unused
assign iocs15a = (ioaddr[6:1] == 60); // AFC DAC
assign iocs15b = (ioaddr[6:1] == 61); // ADC peak detect
assign iocs15c = (ioaddr[6:1] == 62); // LEDs
assign iocs15d = (ioaddr[6:1] == 63);
// Ethernet Interface (100 Mbps FDX)
ethernet100 enet (
.maddr(maddr[9:0]), // 1 kW RAMs
.mcs0(mcs1), // transmit
.mwr0(mwr),
.min0(mout),
.mout0(min1),
.mcs1(mcs2), // receive
.mout1(min2),
.iocs(iocs0),
.ioaddr(ioaddr[2:0]),// I/O interface
.din(dout),
.dout(din0),
.iowr(iowr),
.iord(iord),
.mclk(mclk), // CPU clock
.mrst(rst),
.rxd(RXD), // Ethernet PHY
.rxv(RXV),
.txd(TXD),
.txv(TXV),
.rclk(rclk), // Ethernet clock
.rstn(RSTN),
.mdc(MDC), // Ethernet PHY management
.mdio(MDIO),
.mint(MINT)
// ,.test(test[9:5]) // test signals
);
// SPI (for serial flash)
spi spi0 (
.iocs(iocs1),
.ioaddr(ioaddr[2:0]), // I/O interface
.din(dout),
.dout(din1),
.iowr(iowr),
.clk(mclk), // CPU clock
.rst(rst),
.sdi(MISO), // SPI
.sdo(MOSI),
.ssn(SSN),
.sck(SCK)
);
assign WPN = 1'b1;
assign HLDN = 1'b1;
// Convolutional Encoder
encoder enc (
.iocs(iocs2),
.ioaddr(ioaddr[2:0]),
.din(dout),
.dout(din2),
.iord(iord),
.iowr(iowr),
.clk(mclk),
.rst(rst)
);
// Viterbi Decoders
viterbi dec1 (
.iocs(miocs8),
.ioaddr(maddr[2:0]),
.din(mout),
.dout(mio8),
.iord(mrd),
.iowr(mwr),
.clk(mclk),
.rst(rst)
);
viterbi dec2 (
.iocs(miocs9),
.ioaddr(maddr[2:0]),
.din(mout),
.dout(mio9),
.iord(mrd),
.iowr(mwr),
.clk(mclk),
.rst(rst)
);
// BP(4,3,7) CODECs
bp437p16 bp (
.iocs(iocs10),
.ioaddr(ioaddr[2:0]),
.din(dout),
.iowr(iowr),
.dout(din10),
.iord(iord),
.clk(mclk)
);
// UART
uart uart0 (
.iocs(iocs4),
.ioaddr(ioaddr[2:0]),
.din(dout),
.dout(din4),
.iord(iord),
.iowr(iowr),
.clk(mclk),
.rst(rst),
.txd(UTXD),
.txen(UTXE),
.rxd(URXD)
);
// FIR Filter Engine
//qfir128x16x18 fir (
// .ioaddr(ioaddr[2:0]),
// .iocs(iocs5),
// .din(dout),
// .iord(iord),
// .iowr(iowr),
// .dout(din5),
// .clk(mclk),
// .rst(rst)
// );
// assign din5 = 16'hFFFF;
// I2S Audio Port
i2s2 afio (
.ioaddr(ioaddr[2:0]),
.iocs(iocs6),
.din(dout),
.iowr(iowr),
.dout(din6),
.iord(iord),
.mclk(mclk), // CPU clock
.mrst(rst),
.aclk(sclk), // audio clock
.sdi(IO[1]), // DCP3 pin 4 - AC2 pin 7
.sdo(IO[3]), // DCP3 pin 8 - AC2 pin 3
.sfs(IO[2]) // DCP3 pin 6 - AC2 pin 5
);
assign IO[0] = 1'b0;
assign IO[4] = 1'b0;
//assign din6 = 0;
// CRC hardware assist
crc1632p8a crc (
.ioaddr(ioaddr[2:0]),
.iocs(iocs7),
.din(dout),
.iowr(iowr),
.dout(din7),
.iord(iord),
.clk(mclk),
.rst(rst)
);
// modem contains CORDIC modulator and demodulator
// plus RSSI and phase correlator for OFDM
// baseband I/O is 16x16-bits to/from CPU
modem16a modem1 (
// .x(x), // test signals
// .y(y),
// .xyv(xyv),
// .m(m),
// .p(p),
// .mpv(mpv),
// .t(t),
// .f(f),
// .ftv(ftev),
.iocs(miocs0), // CPU interface
.ioaddr(maddr[2:0]),
.din(mout),
.dout(mio0),
.iowr(mwr),
.iord(mrd),
.rdix(mrax), // receiver input from AGC
.rdiy(mray),
.riv(mrav),
// .rdix(16'h1000), // TEST -18dBFS
// .rdiy(16'h0000),
// .riv(testv),
.toe(mfae), // output enable from clipper
.tdox(mtax), // transmitter output to clipper
.tdoy(mtay),
.tov(mtav),
.pttout(ptta),
.start(starta), // synchronization signals to FFT
.sync(synca),
.dcd(dcda),
.fcd(fcda),
.clk(mclk), // common clock and reset
.rst(rst),
.xmtout(xmta) // T/R switch output
);
modem16a modem2 (
// .x(x), // test signals
// .y(y),
// .xyv(xyv),
// .m(m),
// .p(p),
// .mpv(mpv),
// .t(t),
// .f(f),
// .ftv(ftev),
.iocs(miocs4), // CPU interface
.ioaddr(maddr[2:0]),
.din(mout),
.dout(mio4),
.iowr(mwr),
.iord(mrd),
.rdix(mrbx), // receiver input from AGC
.rdiy(mrby),
.riv(mrbv),
.toe(mfbe), // output enable from clipper
.tdox(mtbx), // transmitter output to clipper
.tdoy(mtby),
.tov(mtbv),
.pttout(pttb),
.start(startb), // synchronization signals to FFT
.sync(syncb),
.dcd(dcdb),
.fcd(fcdb),
.clk(mclk), // common clock and reset
.rst(rst),
.xmtout(xmtb) // T/R switch output
);
// 32-256 point FFT and IFFT
dft256r16p8 dft1 (
// .w(w), // test
// .x(x0),
// .y(y0),
.iocs(miocs1), // CPU interface
.ioaddr(maddr[2:0]),
.din(mout),
.iowr(mwr),
.dout(mio1),
.iord(mrd),
.mcs(mcs3),
.maddr(maddr[7:0]), // DMA interface
.min(mout),
.mout(min3),
.mwr(mwr),
.toe(ftae & mfae), // output enable when modem stopped
.tdox(ftax), // to AGC/resample/comp.
.tdoy(ftay),
.tov(ftav),
.ten(ftae), // FFT transmit enable output
.cpe(),
.rdix(mrax), // from AGC
.rdiy(mray),
.riv(mrav),
.clk(mclk),
.rst(rst),
.xmt(xmta), // transmit
.sof(starta), // sync. inputs
.sync(synca),
.dcd(dcda),
.intr() // sync. output
);
dft256r16p8 dft2 (
// .w(w), // test
// .x(x0),
// .y(y0),
.iocs(miocs5), // CPU interface
.ioaddr(maddr[2:0]),
.din(mout),
.iowr(mwr),
.dout(mio5),
.iord(mrd),
.mcs(mcs4),
.maddr(maddr[7:0]), // DMA interface
.min(mout),
.mout(min4),
.mwr(mwr),
.toe(ftbe & mfbe), // output enable when modem stopped
.tdox(ftbx), // to AGC/resample/comp.
.tdoy(ftby),
.tov(ftbv),
.ten(ftbe), // FFT transmit enable output
.cpe(),
.rdix(mrbx), // from AGC
.rdiy(mrby),
.riv(mrbv),
.clk(mclk),
.rst(rst),
.xmt(xmtb), // transmit
.sof(startb), // sync. inputs
.sync(syncb),
.dcd(dcdb),
.intr() // sync. output
);
// multiplexer selects FFT or Modem output for transmission
assign mftax = ftae ? ftax : mtax;
assign mftay = ftae ? ftay : mtay;
assign mftav = ftae ? ftav : mtav;
assign mftbx = ftbe ? ftbx : mtbx;
assign mftby = ftbe ? ftby : mtby;
assign mftbv = ftbe ? ftbv : mtbv;
// AGC Module converts 20 to 16 bits on receive
//agcrsmplclip arc1 ( // with resampler
agcclip arc1 ( // without resampler
// .gain(gaina), // test signal
.iocs(miocs3), // configuration interface
.ioaddr(maddr[2:0]),
.iowr(mwr),
.din(mout),
.iord(mrd),
.dout(mio3),
.rdix(trax), // 2x20-bit baseband input from tuner
.rdiy(tray),
.riv(trav),
.rdox(mrax), // 2x16-bit baseband output to modem and FFT
.rdoy(mray),
.rov(mrav),
.tie(mfae), // input enable to modem and FFT
.tdix(mftax), // 2x16-bit baseband input bypasses AGC
.tdiy(mftay),
.tiv(mftav),
.toe(tardy), // 2x16-bit baseband output to tuner
.tdox(ttax),
.tdoy(ttay),
.tov(ttav),
.clk(mclk), // master clock and reser
.rst(rst),
.xmt(xmta)
);
//agcrsmplclip arc2 ( // with resampler
agcclip arc2 ( // without resampler
// .gain(gainb), // test signal
.iocs(miocs7), // configuration interface
.ioaddr(maddr[2:0]),
.iowr(mwr),
.din(mout),
.iord(mrd),
.dout(mio7),
.rdix(trbx), // 2x20-bit baseband input from tuner
.rdiy(trby),
.riv(trbv),
// .rdix(20'h01000), // TEST -42dBFS
// .rdiy(20'h00000),
// .riv(testv),
.rdox(mrbx), // 2x16-bit baseband output to modem and FFT
.rdoy(mrby),
.rov(mrbv),
.tie(mfbe), // input enable to modem and FFT
.tdix(mftbx), // 2x16-bit baseband input bypasses AGC
.tdiy(mftby),
.tiv(mftbv),
.toe(tbrdy), // 2x16-bit baseband output to tuner
.tdox(ttbx),
.tdoy(ttby),
.tov(ttbv),
.clk(mclk), // master clock and reser
.rst(rst),
.xmt(xmtb)
);
// Test Signal Generator (32 ksps data valid)
//reg [10:0] tctr;
//wire ttc;
//always @ (posedge mclk)
//begin
// if (rst|ttc) tctr <= 0;
// else tctr <= tctr + 1'b1;
// testv <= ttc;
//end
//assign ttc = (tctr == 1499);
// The tuner converts a signal at specified a frequency to a baseband output near DC. The
// AD9255 ADC output is offset binary and changes 2.3-8.3 ns before the SCLK positive edge.
// In transmit mode, the baseband signal is converted to the specified output frequency.
// The AD9744 DAC input is offset binary and requires a 2 ns setup time and 1.5 ns hold
// time relative to the postiive-going edge of SCLK so must be delayed by 1/2 SCLK period.
// ADC SPI port
assign ADCCSN = 1'b1; // disable SPI port
assign ADCSCK = 1'b0;
assign ADCSDIO = 1'bx;
// ADC buffer registers
reg [13:0] uadc,sadc; // unsigned and signed ADC data output
reg [13:0] rfia,rfib; // ADC buffers
reg adcovf,adcovff; // ADC overflow flag
// latch incoming data using external clock
//always @ (posedge adcclk)
always @ (posedge sclk)
begin
uadc <= ADC;
adcovf <= OVF;
end
// convert offset binary to signed fraction (internal clock)
always @ (posedge sclk)
begin
sadc <= {~uadc[13],uadc[12:0]};
rfia <= sadc; // buffer input to each tuner
rfib <= sadc;
end
// latch ADC overflow and reset when read (adcovf is asynchronous)
always @ (posedge mclk) if (iocs15b & iord) adcovff <= 0; else adcovff <= (adcovff|adcovf);
// measure maximum ADC output magnitude
wire [10:0] maxadc; // 11-bit unsigned output
wire maxrst; // reset
max12 max (
.sig(sadc[13:2]), // ADC input samples
.max(maxadc), // maximum sample magnitude
.clk(sclk), // ADC sample rate
.rst(maxrst) // reset when read
);
assign din15 = {adcovff,4'h0,maxadc}; // convert to 16 bits
// generate delayed read enable synchronized to DCLK
syn2clk synmax (
.a(iocs15b & iord), // detect read of max. sig. reg.
.aclk(mclk), // CPU clock and reset
.arst(rst),
.b(maxrst), // reset maximum signal magnitude register
.bclk(sclk), // ADC clock and reset
.brst(rst)
);
// DAC output select and conversion to offset binary
wire [15:0] rfoa,rfob; // tuner outputs
reg [13:0] daca,dacb,dacmux,dacreg; // DAC input registers
reg [14:0] dacab; // adder
always @ (negedge sclk)
begin
daca <= rfoa[15:2]; // buffer tuner outputs and truncate
dacb <= rfob[15:2];
dacab <= {daca[13],daca} + {dacb[13],dacb}; // sum both for ISB
case ({ptta,pttb}) // select output for DAC
2'b00: dacmux <= 14'h2000; // neither transmitting
2'b01: dacmux <= {~dacb[13],dacb[12:0]}; // B transmitting
2'b10: dacmux <= {~daca[13],daca[12:0]}; // A transmitting
2'b11: dacmux <= {~dacab[14],dacab[13:1]}; // both transmitting
default: dacmux <= 14'hxxxx;
endcase
dacreg <= dacmux;
end
assign DAC = dacreg;
tuner1 fe1 (
.iocs(miocs2), // select this module
.ioaddr(maddr[2:0]), // 8 registers
.din(mout), // configuration data
.iowr(mwr), // write configuration
.dout(mio2), // status
.iord(mrd), // read staus
.rfin({rfia,2'b00}), // 16-bit signed ADC input sampled at SCLK positive-going edge
.rfout(rfoa), // 16-bit signed DAC output changing at SCLK negative-going edge
.rfd(tardy),
.dix(ttax), // 2x16-bit baseband input from clipper
.diy(ttay),
.iv(ttav),
.dox(trax), // 2x20-bit baseband output to AGC
.doy(tray),
.ov(trav),
.iq(iq), // 1=I, 0=Q (changes after SCLK)
.dclk(dclk), // filter clock
.mclk(mclk), // CPU I/O clock
.mrst(rst),
.xmtin(xmta),
.rdy(frdya)//, // FIFO test signals
// .full(full)
);
tuner1 fe2 (
.iocs(miocs6), // select this module
.ioaddr(maddr[2:0]), // 8 registers
.din(mout), // configuration data
.iowr(mwr), // write configuration
.dout(mio6), // status
.iord(mrd), // read staus
.rfin({rfib,2'b00}), // 16-bit signed ADC input sampled at SCLK positive-going edge
.rfout(rfob), // 16-bit signed DAC output changing at SCLK negative-going edge
.rfd(tbrdy),
.dix(ttbx), // 2x16-bit baseband input from clipper
.diy(ttby),
.iv(ttbv),
.dox(trbx), // 2x20-bit baseband output to AGC
.doy(trby),
.ov(trbv),
.iq(iq), // 1=I, 0=Q (changes after SCLK)
.dclk(dclk), // filter clock
.mclk(mclk), // CPU I/O clock
.mrst(rst),
.xmtin(xmtb),
.rdy(frdyb)//, // FIFO test signals
// .full(full)
);
// Test DAC Multiplexer
//reg [2:0] bbs; // source select
//reg [6:0] bbc; // bit counter (63->0)
//wire bbnz; // counter non-zero
//reg [11:0] bbd; // data multiplexer
//reg [11:0] bbd0,bbd1,bbd2,bbd3,bbd4,bbd5,bbd6,bbd7;
//reg bbv; // data valid mux.
//reg bbv0,bbv1,bbv2,bbv3,bbv4,bbv5,bbv6,bbv7;
//reg [15:0] bbsr; // data shift register
//wire bbe; // shift enable
//always @ (posedge mclk)
//begin
// data multiplexer
// if (rst) bbs <= 4; // source select register
// else if (iocs13 & iowr) bbs <= dout[2:0];
// bbd0 <= x[15:4]; // magnitude
// bbd1 <= {~y[15],y[14:4]}; // phase or frequency
// bbd2 <= m[15:4]; // RSSI
// bbd3 <= p; // phase correlator
// bbd4 <= ~gaina[15:4]; // AGC 1
// bbd5 <= ~gainb[15:4]; // AGC 2
// bbd5 <= {~w[8],w[7:0],3'b000}; // FFT sample timing
// bbd6 <= {~ttx[15],ttx[14:4]};
// bbd7 <= {~tty[15],tty[14:4]};
// bbd6 <= {~t[15],t[14:4]}; // timing error
// bbd7 <= {~f[15],f[14:4]}; // costas loop error
// bbd6 <= {~x0,4'h0}; // pilot carrier magnitude and phase
// bbd7 <= {~y0[7],y0[6:0],4'h0};
// case (bbs) // data multiplexer
// 0: bbd <= bbd0;
// 1: bbd <= bbd1;
// 2: bbd <= bbd2;
// 3: bbd <= bbd3;
// 4: bbd <= bbd4;
// 5: bbd <= bbd5;
// 6: bbd <= bbd6;
// 7: bbd <= bbd7;
// default: bbd <= 12'hxxx;
// endcase
// strobe multiplexer
// bbv0 <= xyv;
// bbv1 <= xyv;
// bbv2 <= mpv;
// bbv3 <= mpv;
// bbv4 <= mrav; // AGC/rsmpl/clip data valid
// bbv5 <= mrbv;
// bbv5 <= mrav;
// bbv6 <= ttv;
// bbv7 <= ttv;
// bbv6 <= ftev;
// bbv7 <= ftev;
// bbv6 <= mrv;
// bbv7 <= mrv;
// case (bbs) // data valid multiplexer
// 0: bbv <= bbv0;
// 1: bbv <= bbv1;
// 2: bbv <= bbv2;
// 3: bbv <= bbv3;
// 4: bbv <= bbv4;
// 5: bbv <= bbv5;
// 6: bbv <= bbv6;
// 7: bbv <= bbv7;
// default: bbv <= 1'bx;
// endcase
// bit counter
// if (rst) bbc <= 0; // power on reset
// else if (bbv) bbc <= 64; // start
// else if (bbnz) bbc <= bbc - 1'b1; // count down
// shift register
// if (bbv) bbsr <= {2'b00,bbd,2'b00}; // PD1 PD0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X X
// else if (bbe) bbsr <= {bbsr[14:0],1'b0}; // shift out MSB first
//end
//assign bbnz = |bbc; // counter not zero
//assign bbe = (bbc[1:0] == 2'b01); // shift enable
//assign SS2N = ~bbnz; // SYNC- (low for 16 SCK)
//assign SDO2 = bbsr[15]; // serial data (read on negative edge SCK2, 5ns setup, 4.5 ns hold)
//assign SCK2 = ~(bbc[1]^bbc[0]); // negative-going clock in center of bit cell (20 MHz max.)
// SPI (for LS ADC & DAC)
spils spi1 (
.iocs(iocs13),
.ioaddr(ioaddr[2:0]), // I/O interface
.din(dout),
.dout(din13),
.iowr(iowr),
.clk(mclk), // CPU clock
.rst(rst),
.sdi(SDI2), // SPI
.sdo(SDO2),
.ss0n(SS2N),
.ss1n(SS3N),
.sck(SCK2)
);
//assign din13 = 0;
//assign SDO2 = 0;
//assign SS2N = 1;
//assign SS3N = 1;
//assign SCK2 = 0;
// Delta-Sigma DAC for VCXO Control (< 0.1 PPB res.)
// write port 120 to load LS 4 bits
// write to port 121 to load MS 16 bits and transfer all 20 bits to DAC
reg [15:12] dsdb; // save least significant 4 bits
always @ (posedge mclk) if (iocs15a & iowr & ~ioaddr[0]) dsdb <= dout[15:12];
dsdac20x1 afcdac (
.din({dout,dsdb}),
.we(iocs15a & iowr & ioaddr[0]),
.clk(mclk),
.rst(rst),
.aout(VCXO)
);
// buffer and stretch test outputs
//stretch32 t5 (.n(starta), .w(test[5]), .c(mclk));
//stretch32 t6 (.n(synca), .w(test[6]), .c(mclk));
reg tdcd,tfcda,tfcdb;
always @ (posedge mclk)
begin
tdcd <= dcda|dcdb;
tfcda <= fcda;
tfcdb <= fcdb;
end
assign test[5] = tdcd;
assign test[6] = tfcda;
assign test[7] = tfcdb;
assign test[8] = redreg;
assign test[9] = grnreg;
// write port 124 to turn off red LED
// write port 125 to turn on red LED
// write port 126 to turn off green LED
// write port 127 to turn on green LED
reg redreg,grnreg;
always @ (posedge mclk)
begin
if (rst) redreg <= 1'b0; // turn off when powered up
else if (iocs15c & iowr) redreg <= ioaddr[0];
if (rst) grnreg <= 1'b0; // turn off when powered up
else if (iocs15d & iowr) grnreg <= ioaddr[0];
end
OBUF pttbuf (.I(ptta|pttb), .O(PTT));
OBUF redbuf (.I(redreg), .O(REDLED));
OBUF grnbuf (.I(grnreg), .O(GRNLED));
endmodule