diff --git a/main.py b/main.py index d39fde8..cf43fa3 100644 --- a/main.py +++ b/main.py @@ -8,11 +8,11 @@ >>> algorithm.run(np.inf, callbacks=metrics + submission_callbacks) """ #%% -import partitioner from cil.optimisation.algorithms import ISTA, Algorithm from cil.optimisation.functions import IndicatorBox, SAGAFunction from cil.optimisation.utilities import (Preconditioner, Sampler, StepSizeRule) +from sirf.contrib.partitioner import partitioner from petric import Dataset import numpy as np @@ -246,7 +246,7 @@ def __init__(self, data: Dataset, update_objective_interval=10): f = -FullGradientInitialiserFunction(obj_funs, sampler=sampler, init_steps=5) preconditioner = BSREMPreconditioner(obj_funs, epsilon=data.OSEM_image.max()/1e6, freeze_iter=10*update_interval+5) - g = IndicatorBox(lower=0, accelerated=True) # non-negativity constraint + g = IndicatorBox(lower=0, accelerated=False) # non-negativity constraint step_size_rule = ArmijoStepSearchRule(0.08, beta, decay, max_iter=100, tol=0.2, init_steps=5, update_interval=10*update_interval+5) diff --git a/partitioner.py b/partitioner.py deleted file mode 100644 index f4144e4..0000000 --- a/partitioner.py +++ /dev/null @@ -1,264 +0,0 @@ -# -# SPDX-License-Identifier: Apache-2.0 -# -# Functions for partitioning sirf.STIR.ACquisitionData in subsets -# -# Authors: Margaret Duff and Kris Thielemans -# -# Copyright 2024 Science Technology Facilities Council -# Copyright 2024 University College London - -import numpy -import math -import sirf.STIR as pet -pet.AcquisitionData.set_storage_scheme('memory') - -def create_RayTracingAcqModel(num_LORs=5): - ''' - Factory that creates a ray-tracing acquisition model - ''' - acq_model = pet.AcquisitionModelUsingRayTracingMatrix() - acq_model.set_num_tangential_LORs(num_LORs) - return acq_model - -def create_ParallelprojModel(): - ''' - Factory that creates a Parallelproj acquisition model - ''' - acq_model = pet.AcquisitionModelUsingParallelproj() - return acq_model - -def _default_acq_model(): - ''' - create default acquisition model - - creates the parallelproj model if it exists, otherwise create a ray-tracing matrix model with 5 LORs - ''' - try: - return create_ParallelprojModel() - except AttributeError: - return create_RayTracingAcqModel() - -def data_partition( prompts, additive_term, multiplicative_factors, num_batches, mode="sequential", seed=None, initial_image=None, create_acq_model = _default_acq_model): - '''Partition the data into ``num_batches`` batches using the specified ``mode`` and creates an acquisition model for every batch. - - - The modes are - - 1. ``sequential`` - The data will be partitioned into ``num_batches`` batches of sequential indices. - - 2. ``staggered`` - The data will be partitioned into ``num_batches`` batches of sequential indices, with stride equal to ``num_batches``. - - 3. ``random_permutation`` - The data will be partitioned into ``num_batches`` batches of random indices. - - Parameters - ---------- - prompts: - Noisy data - additive_term: - additive term ("corrected" scatter+randoms) - multiplicative_factors: - bin efficiencies - num_batches : int - The number of batches to partition the data into. - mode : str - The mode to use for partitioning. Must be one of "sequential", "staggered" or "random_permutation". - seed : int, optional - The seed to use for the random permutation. If not specified, the random number - generator will not be seeded. - initial_image: Optional, ImageData - If passed, the returned objectives and acquisition models will be set-up. If not, you will have to do this yourself. - create_acq_model: Optional, AcquisitionModel "factory" - The argument needs to be a function that returns a new AcquisitionMode, such as create_RayTracingAcqModel. - - - Returns - ------- - List of data subsets - - List of acquisition models - - List of objective functions - - Example - ------- - - Partitioning a list of ints [0, 1, 2, 3, 4, 5, 6, 7, 8] into 4 batches will return: - - 1. [[0, 1, 2], [3, 4], [5, 6], [7, 8]] with ``sequential`` - 2. [[0, 4, 8], [1, 5], [2, 6], [3, 7]] with ``staggered`` - 3. [[8, 2, 6], [7, 1], [0, 4], [3, 5]] with ``random_permutation`` and seed 1 - - ''' - if mode == "sequential": - return _partition_deterministic( prompts, additive_term, multiplicative_factors, num_batches, stagger=False, initial_image=initial_image, create_acq_model=create_acq_model) - elif mode == "staggered": - return _partition_deterministic( prompts, additive_term, multiplicative_factors, num_batches, stagger=True, initial_image=initial_image, create_acq_model=create_acq_model) - elif mode == "random": - return _partition_random_permutation( prompts, additive_term, multiplicative_factors, num_batches, seed=seed, initial_image=initial_image, create_acq_model=create_acq_model) - else: - raise ValueError('Unknown partition mode {}'.format(mode)) - -def _partition_deterministic( prompts, additive_term, multiplicative_factors, num_batches, stagger=False, indices=None, initial_image=None, create_acq_model = _default_acq_model): - '''Partition the data into ``num_batches`` batches. - - Parameters - ---------- - prompts: - Noisy data - additive_term: - additive term ("corrected" scatter+randoms) - multiplicative_factors: - bin efficiencies - num_batches : int - The number of batches to partition the data into. - stagger : bool, optional - If ``True``, the batches will be staggered. Default is ``False``. - indices : list of int, optional - The indices to partition. If not specified, the indices will be generated from the number of projections. - initial_image: Optional, ImageData - If passed, the returned objectives and acquisition models will be set-up with this image. If not, they will be returned uninitialised. - create_acq_model: Optional, AcquisitionModel "factory" - The argument needs to be a function that returns a new AcquisitionModel, such as create_RayTracingAcqModel. - - Returns - ------- - List of data subsets - - List of acquisition models - - List of objective functions - - - ''' - acquisition_models=[] - prompts_subsets=[] - objectives=[] - - views=prompts.dimensions()[2] - if indices is None: - indices = list(range(views)) - partitions_idxs = partition_indices(num_batches, indices, stagger) - - for i in range(len(partitions_idxs)): - if len(partitions_idxs) > 1: - prompts_subset = prompts.get_subset(partitions_idxs[i]) - additive_term_subset = additive_term.get_subset(partitions_idxs[i]) - multiplicative_factors_subset = multiplicative_factors.get_subset(partitions_idxs[i]) - else: - prompts_subset = prompts - additive_term_subset = additive_term - multiplicative_factors_subset = multiplicative_factors - - sensitivity_factors = pet.AcquisitionSensitivityModel(multiplicative_factors_subset) - sensitivity_factors.set_up(multiplicative_factors_subset) - acquisition_model = create_acq_model() - acquisition_model.set_acquisition_sensitivity(sensitivity_factors) - acquisition_model.set_additive_term(additive_term_subset) - - if initial_image is not None: - acquisition_model.set_up(prompts_subset, initial_image) - - acquisition_models.append(acquisition_model) - prompts_subsets.append(prompts_subset) - - objective_sirf = pet.make_Poisson_loglikelihood(prompts_subset, acq_model = acquisition_model) - if initial_image is not None: - objective_sirf.set_up(initial_image) - objectives.append(objective_sirf) - - - return prompts_subsets, acquisition_models, objectives - - -def _partition_random_permutation( prompts, additive_term, multiplicative_factor, num_batches, seed=None, initial_image=None, create_acq_model = _default_acq_model): - '''Partition the data into ``num_batches`` batches using a random permutation and creates an acquisition model for each batch. - - Parameters - ---------- - prompts: - Noisy data - additive_term: - additive term ("corrected" scatter+randoms) - multiplicative_factors: - bin efficiencies - num_batches : int - The number of batches to partition the data into. - seed : int, optional - The seed to use for the random permutation. If not specified, the random number generator - will not be seeded. - initial_image: Optional, ImageData - If passed, the returned objectives and acquisition models will be set-up with this image. If not, they will be returned uninitialised - create_acq_model: Optional, AcquisitionModel "factory" - The argument needs to be a function that returns a new AcquisitionModel, such as create_RayTracingAcqModel. - - Returns - ------- - List of data subsets - - List of acquisition models - - List of objective functions - - ''' - views=prompts.dimensions()[2] - if seed is not None: - numpy.random.seed(seed) - - indices = numpy.arange(views) - numpy.random.shuffle(indices) - - indices = list(indices) - - return _partition_deterministic(prompts, additive_term, multiplicative_factor, num_batches, stagger=False, indices=indices, initial_image=initial_image) - -def partition_indices(num_batches, indices, stagger=False): - """Partition a list of indices into num_batches of indices. - - Parameters - ---------- - num_batches : int - The number of batches to partition the indices into. - indices : list of int, int - The indices to partition. If passed a list, this list will be partitioned in ``num_batches`` - partitions. If passed an int the indices will be generated automatically using ``range(indices)``. - stagger : bool, default False - If True, the indices will be staggered across the batches. - - Returns - -------- - list of list of int - A list of batches of indices. - """ - # Partition the indices into batches. - if isinstance(indices, int): - indices = list(range(indices)) - - num_indices = len(indices) - # sanity check - if num_indices < num_batches: - raise ValueError( - 'The number of batches must be less than or equal to the number of indices.' - ) - - if stagger: - batches = [indices[i::num_batches] for i in range(num_batches)] - - else: - # we split the indices with floor(N/M)+1 indices in N%M groups - # and floor(N/M) indices in the remaining M - N%M groups. - - # rename num_indices to N for brevity - N = num_indices - # rename num_batches to M for brevity - M = num_batches - batches = [ - indices[j:j + math.floor(N / M) + 1] for j in range(N % M) - ] - offset = N % M * (math.floor(N / M) + 1) - for i in range(M - N % M): - start = offset + i * math.floor(N / M) - end = start + math.floor(N / M) - batches.append(indices[start:end]) - - return batches