umap_coords = generateUmapFromWSIR(WSIR = wsir_obj)
-umap_plots = plotUmapFromWSIR(exprs = sample1_exprs,
+umap_plots = plotUmapFromWSIR(X = sample1_exprs,
umap_coords = umap_coords,
highest_genes = top_genes_obj,
n_genes = 6)
@@ -431,24 +431,38 @@ Single-
data:
dim(sample2_low_dim_exprs)
-## [1] 2986 9
+## [1] 2986 20
Observe some of sample 2’s low-dimensional gene expression data:
head(sample2_low_dim_exprs)
-## [,1] [,2] [,3] [,4] [,5] [,6]
-## [1,] 1.2044363 -0.3790739 -1.72818610 -1.797653672 -0.8684785 -0.74469382
-## [2,] 0.5738578 0.4719606 0.26341538 -0.341280096 -0.4274574 0.34500227
-## [3,] 1.2749872 -0.8741444 -1.34429322 0.009172746 0.4562988 0.42206043
-## [4,] 1.7326508 -0.3322124 -0.55148621 0.732668048 -0.2272738 0.30675261
-## [5,] 2.1501634 -0.8665235 0.04544417 0.779635209 -0.4277316 0.17938548
-## [6,] 1.2074795 -1.1035173 0.51632770 1.048309253 -1.0852001 -0.01835717
-## [,7] [,8] [,9]
-## [1,] 3.437305 0.5718475 -0.4848100
-## [2,] 1.304516 1.7813543 0.6194540
-## [3,] 2.313171 0.0540894 -0.3177639
-## [4,] 2.269962 0.5799911 -1.2385839
-## [5,] 0.899609 1.5397581 0.1789930
-## [6,] 1.244870 0.5720243 0.4845666
+## [,1] [,2] [,3] [,4] [,5] [,6]
+## [1,] 1.0930341 -0.1443871 -1.5090562 1.5873578 -1.3890866 0.3799610
+## [2,] 0.4680595 0.5327497 -0.3728135 1.0015734 0.8920196 0.1513758
+## [3,] 1.2711455 -0.7397591 -1.4112419 -0.8839003 0.2468790 0.3832880
+## [4,] 1.7531946 -0.1143880 -0.7064318 -0.3602051 0.4724328 -0.2961441
+## [5,] 2.2381875 -0.5924558 -0.3165188 0.2141844 0.7782123 -0.2621179
+## [6,] 1.3299499 -0.8290736 0.6474762 0.6397734 0.5299646 -0.9353155
+## [,7] [,8] [,9] [,10] [,11] [,12]
+## [1,] -3.4678998 0.56681244 -0.81551059 1.1852559 -0.73526941 -1.0785081
+## [2,] -1.0017729 1.95474647 -0.43692515 -0.1603876 -0.15958819 -0.4427703
+## [3,] -2.3845440 0.08795112 1.16277476 0.2721857 0.28169183 0.4604845
+## [4,] -2.2187255 0.65176353 0.20339372 1.2128839 1.07096226 0.4317445
+## [5,] -0.5669189 1.84121180 0.06402206 -0.3221178 0.02488601 0.3517457
+## [6,] -1.0554684 1.07326688 -0.42296176 -0.3972216 -0.72847203 0.7158252
+## [,13] [,14] [,15] [,16] [,17] [,18]
+## [1,] 0.22645766 0.7414184 0.885021243 1.74928451 0.4172434 -0.36172912
+## [2,] -0.11743827 -1.3097013 0.335409580 -0.19737044 1.9184451 0.06779531
+## [3,] -0.09524678 -0.7460559 -0.583083970 0.25165178 0.6701605 0.43165415
+## [4,] -0.04954717 -1.0375261 -0.005446275 -0.59153455 0.4787165 0.06904808
+## [5,] 1.03117637 -0.4426845 -0.023429569 0.03480782 -0.1772584 -0.21056960
+## [6,] 0.35505985 -0.2426742 1.098536792 0.38752300 0.1341204 0.42348720
+## [,19] [,20]
+## [1,] 0.2994094 0.71759073
+## [2,] -0.3500336 -0.06717946
+## [3,] 0.6338821 0.32693292
+## [4,] 0.6517039 0.23217160
+## [5,] -1.2366838 0.41684787
+## [6,] -0.9978965 0.58964001
This low-dimensional gene expression data can then be used for any
later tasks which would benefit from a low-dimensional embedding of the
gene expression data for all the samples, rather than just the gene
@@ -477,7 +491,7 @@
Multi-sa
sample3_low_dim_exprs <- projectWSIR(wsir = wsir_obj_samples12, newdata = sample3_exprs)
dim(sample3_low_dim_exprs)