-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_deconv.py
329 lines (246 loc) · 12.2 KB
/
infer_deconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import numpy as np
import random
import torch
import torch.nn as nn
import time
import datetime
import scipy
import pandas as pd
from config import Config
from util.utils import *
from util.closs import PairLoss, L1regularization
from util.backprop_utils import VanillaBackprop
from util.saliency_utils import read_cell_ids, subsample_cell
from util.dataloader import PrepareUnprocessedDataloaderSampledProbs, UnprocessedDataloaderSampledProbs
from util.model_residual import BN_common_encoder
from argparse import ArgumentParser
if __name__ == "__main__":
time_start = time.time()
# Set random seed for reproducibility
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
parser = ArgumentParser()
parser.add_argument("--DB", type=str, help = "")
parser.add_argument("--day1", type=int, nargs="+",
help="Starting days (can have multiple)")
parser.add_argument("--day2", type=int, nargs="+",
help="Ends days (can have multiple)")
parser.add_argument("--day1_cluster", type=str,
help="Starting cluster (one)")
parser.add_argument("--day2_clusters", type=str, nargs="+",
help="Ending clusters (can have multiple. 2 in previous experiments.")
parser.add_argument("--epochs", type=int, default=200,
help="Training epochs for classification.")
parser.add_argument("--lr", type=float, default=0.001,
help="Learning rate for lienar classifier.")
parser.add_argument("--clip_max_probs", type=float, default=0.0,
help="Minimum probability (confidence) threshold. Remove all training data under this threshold.")
parser.add_argument("--common_loss_weight", type=float, default=0.1,
help="Weight for RNA-ATAC L2 distance loss.")
parser.add_argument("--atac_l1_weight", type=float, default=0.001,
help="Weight for ATAC encoder L1 reg. loss.")
parser.add_argument("--rna_l1_weight", type=float, default=0.0,
help="Weight for RNA encoder L1 reg. loss.")
parser.add_argument("--input_dir", type=str, default="", required=True,
help="Folder where input data is stored.")
parser.add_argument("--pretrained_name", type=str, required=True,
help="Pretrained model name.")
parser.add_argument("--pretrained_checkpoints_dir", type=str, default="",
help="Folder where pretrained model weights are stored.")
parser.add_argument("--pretrained_results_dir", type=str, default="",
help="Folder where pretrained model transport matrices are stored.")
parser.add_argument("--output_dir", type=str, default="./output",
help="Folder to store trained classifier weights and gradients.")
parser.add_argument("--seed", type=int, default=1,
help="Seed.")
parser.add_argument("--filter_peaks", type=str, default= None,
help="Directory of a list of peaks being filtered out")
args = parser.parse_args()
rna_all_days_std_dir = os.path.join(args.input_dir, "rna_all_days_std.npy")
if os.path.exists(rna_all_days_std_dir) is not True:
config = Config(DB = args.DB)
data = []
for file_name in config.rna_paths:
data.append(scipy.sparse.load_npz(file_name))
data = scipy.sparse.vstack(data)
stds = np.std(np.log1p(data * 10000/data.sum(axis = 1)), axis = 0, ddof=1)
np.save(f"{args.input_dir}/rna_all_days_std.npy", np.squeeze(np.array(stds)))
rna_all_days_std = np.load(rna_all_days_std_dir)
seed = args.seed
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
config = Config(DB = args.DB, days = args.day1)
day1_cluster = args.day1_cluster
day2_clusters = args.day2_clusters
d1_str = "-".join([str(d) for d in args.day1])
d2_str = "-".join([str(d) for d in args.day2])
name = f"day{d1_str}_{day1_cluster}_to_day{d2_str}_{day2_clusters[0]}_{day2_clusters[1]}_l1reg_rna{args.rna_l1_weight}_atac{args.atac_l1_weight}_pair{args.common_loss_weight}"
save_dir = os.path.join(args.output_dir, name)
os.makedirs(save_dir, exist_ok=True)
all_day1_ids = []
all_day1_probs = []
total_lib_size = 0
for d1 in args.day1:
day1_ids = read_cell_ids(args.input_dir, f"day{d1}_{day1_cluster}.csv")
all_probs = []
weights = []
for d2 in args.day2:
# Accumulating probabilities
if d2 <= d1:
continue
# print(d1, d2)
day2_cluster1_ids = read_cell_ids(args.input_dir, f"day{d2}_{day2_clusters[0]}_from_day{d1}_{day1_cluster}.csv")
day2_cluster2_ids = read_cell_ids(args.input_dir, f"day{d2}_{day2_clusters[1]}_from_day{d1}_{day1_cluster}.csv")
gamma = np.load(os.path.join(args.pretrained_results_dir, args.pretrained_name, f"common_gamma_day{d1}_day{d2}_wad.npy"))
lib_size_new = gamma.shape[0]
gamma = gamma[day1_ids]
day2_cluster1_prob = gamma[:, day2_cluster1_ids].sum(axis=1, keepdims=True)
day2_cluster2_prob = gamma[:, day2_cluster2_ids].sum(axis=1, keepdims=True)
probs = np.concatenate([day2_cluster1_prob, day2_cluster2_prob], axis=1)
probs = probs / np.sum(probs, axis=1, keepdims=True)
all_probs.append(probs)
weights.append(np.sum(probs, axis=1, keepdims=True))
# Rescale probabilities
weighted_probs = sum(p * w for (p, w) in zip(all_probs, weights))
all_probs = weighted_probs / sum(weights)
np.save(os.path.join(save_dir, f"prob_day{d1}_{day1_cluster}.npy"), all_probs)
all_day1_probs.append(all_probs)
# Shift the ids of training data by current accumulated library size.
# For dataloader sampling.
day1_ids += total_lib_size
total_lib_size += lib_size_new
all_day1_ids.append(day1_ids)
all_day1_probs = np.concatenate(all_day1_probs, axis=0)
all_day1_ids = np.concatenate(all_day1_ids)
# print((all_day1_probs))
# print((all_day1_ids))
# Remove training data with probabilities under specified threshold.
all_day1_probs, all_day1_ids = clip_high_probs(all_day1_probs, all_day1_ids, args.clip_max_probs)
housekeeping_genes_idx = None
if args.filter_peaks is not None:
filter_idx = np.genfromtxt(args.filter_peaks, delimiter=',')[1:, 1].astype(int)
filter_idx.sort()
encoder = BN_common_encoder(config.rna_size, config.atac_size, config.embedding_size, config.hidden_size).cuda()
print("Loading state dict ...")
ckpt = torch.load(os.path.join(args.pretrained_checkpoints_dir, f"checkpoint_{args.pretrained_name}_e500.pth.tar"))
encoder.load_state_dict(ckpt["model_encoding_state_dict"])
encoder = encoder.float()
encoder.train()
l = 1
# KL divergense loss
criterion = nn.KLDivLoss()
rna_classifier = nn.Sequential(
nn.Linear(config.embedding_size, len(args.day2_clusters)),
nn.Softmax(dim=-1)
).cuda()
atac_classifier = nn.Sequential(
nn.Linear(config.embedding_size, len(args.day2_clusters)),
nn.Softmax(dim=-1)
).cuda()
pair_criterion = PairLoss()
atac_l1_reg_criterion = L1regularization(weight_decay=args.atac_l1_weight)
rna_l1_reg_criterion = L1regularization(weight_decay=args.rna_l1_weight)
optimizer = torch.optim.Adam(
[{'params': rna_classifier.parameters()},
{'params': atac_classifier.parameters()},
{'params': encoder.parameters()}
],
lr = args.lr
)
trainloader, testloader = PrepareUnprocessedDataloaderSampledProbs(
config.rna_paths, config.atac_paths,
config.rna_labels, config.atac_labels,
all_day1_ids, all_day1_probs, config.batch_size,
housekeeping_genes_idx, config.rna_input
).getloader()
epochs = args.epochs
for e in range(epochs):
epoch_rna_loss = 0
epoch_atac_loss = 0
epoch_common_loss = 0
epoch_l1_loss = 0
cnt = 0
for i, (rna, atac, probs) in enumerate(trainloader):
rna, atac, probs = rna.float().cuda(), atac.float().cuda(), probs.float().cuda()
if args.filter_peaks is not None:
atac[:,filter_idx] = 0 # make the filter_idx as 0
rna_feat, atac_feat, _, _ = encoder(rna, atac)
rna_pred_probs = rna_classifier(rna_feat)
atac_pred_probs = atac_classifier(atac_feat)
rna_loss = criterion(torch.log(rna_pred_probs), probs)
atac_loss = criterion(torch.log(atac_pred_probs), probs)
common_loss = args.common_loss_weight * pair_criterion(rna_feat, atac_feat).sum() \
/ (rna_feat.size()[0] * rna_feat.size()[1])
atac_l1_loss = atac_l1_reg_criterion(encoder.atac_encoder)
rna_l1_loss = rna_l1_reg_criterion(encoder.rna_encoder)
l1_loss = atac_l1_loss + rna_l1_loss
loss = rna_loss + atac_loss + common_loss + l1_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_rna_loss += rna_loss.item()
epoch_atac_loss += atac_loss.item()
epoch_common_loss += common_loss.item()
epoch_l1_loss += l1_loss.item()
cnt += 1
epoch_rna_loss /= cnt
epoch_atac_loss /= cnt
epoch_common_loss /= cnt
epoch_l1_loss /= cnt
print(f"Epoch {e} | rna loss {epoch_rna_loss} | atac loss {epoch_atac_loss} | common loss {epoch_common_loss} | l1reg {epoch_l1_loss}")
if epochs > 0:
print("Saving checkpoints ...")
save_checkpoint({
'encoder': encoder.state_dict(),
'rna_cls': rna_classifier.state_dict(),
'atac_cls': atac_classifier.state_dict()#,
}, save_dir, filename="checkpoint.pth.tar")
cls_ckpt = torch.load(os.path.join(save_dir, "checkpoint.pth.tar"))
rna_classifier.load_state_dict(cls_ckpt["rna_cls"])
atac_classifier.load_state_dict(cls_ckpt["atac_cls"])
encoder.load_state_dict(cls_ckpt["encoder"])
rna_classifier.eval()
atac_classifier.eval()
encoder.eval()
# backprop to generate gradients
rna_model_layers = [encoder.batchnorm, *encoder.rna_encoder, *rna_classifier]
rna_model_layers.pop(0) # remove 1st batchnorm layer in backprop model
rna_model = nn.Sequential(*rna_model_layers).cuda()
atac_model_layers = [encoder.atac_batchnorm, *encoder.atac_encoder, *atac_classifier]
atac_model_layers.pop(0) # remove 1st batchnorm layer in backprop model
atac_model = nn.Sequential(*atac_model_layers).cuda()
# Create backprop wrapper
bp_rna = VanillaBackprop(rna_model)
bp_atac = VanillaBackprop(atac_model)
# To accumulate gradients
grad_rna0_all = []
grad_atac0_all = []
grad_rna1_all = []
grad_atac1_all = []
for i, (rna, atac, probs) in enumerate(testloader):
rna, atac, probs = rna.float().cuda(), atac.float().cuda(), probs.float().cuda()
rna = encoder.batchnorm(rna)
atac = encoder.atac_batchnorm(atac)
for j in range(rna.shape[0]):
grad_rna0 = bp_rna.generate_gradients(rna[j].unsqueeze(0), 0)
grad_atac0 = bp_atac.generate_gradients(atac[j].unsqueeze(0), 0)
grad_rna1 = bp_rna.generate_gradients(rna[j].unsqueeze(0), 1)
grad_atac1 = bp_atac.generate_gradients(atac[j].unsqueeze(0), 1)
grad_rna0_all.append(grad_rna0)
grad_atac0_all.append(grad_atac0)
grad_rna1_all.append(grad_rna1)
grad_atac1_all.append(grad_atac1)
grad_rna0_all = np.stack(grad_rna0_all, axis=0)
grad_atac0_all = np.stack(grad_atac0_all, axis=0)
grad_rna1_all = np.stack(grad_rna1_all, axis=0)
grad_atac1_all = np.stack(grad_atac1_all, axis=0)
grad_rna0_all = grad_rna0_all * (rna_all_days_std[None, ...])
grad_rna0_all = np.mean(grad_rna0_all, axis=0)
grad_atac0_all = np.mean(grad_atac0_all, axis=0)
np.save(os.path.join(save_dir, f"grad_rna.npy"), grad_rna0_all)
np.save(os.path.join(save_dir, f"grad_atac.npy"), grad_atac0_all)
print("time spent:", datetime.timedelta(seconds=time.time()-time_start))