-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
266 lines (210 loc) · 8.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import itertools
import json
import os
import random
import shutil
import torch
from transformers import Adafactor, T5ForConditionalGeneration, T5Tokenizer
from analysis import as_percent
from analysis import main as print_results
from generate import datasets as dataset_names
from generate import main as generate_datasets
datasets = {}
models = dataset_names + ["Untrained"]
def sample_two_lists(list1, list2, k):
return zip(*random.sample(list(zip(list1, list2)), k))
def combine_datasets(*indices):
partitions = ["train", "dev", "test"]
parts = [dataset_names[index] for index in indices]
name = "+".join([part.replace("Abduction-", "") for part in parts])
models.append(name)
random.seed(name)
datasets[name] = {}
for partition in partitions:
datasets[name][partition] = list(
itertools.chain.from_iterable([datasets[part][partition] for part in parts])
)
random.shuffle(datasets[name][partition])
def generate(text, model, tokenizer, device):
model.eval()
input_ids = tokenizer.encode(text, return_tensors="pt")
input_ids = input_ids.to(device)
outputs = model.generate(input_ids)
return as_output(tokenizer.decode(outputs[0]))
def as_input(context, observation):
return context + "\n" + observation.removesuffix(".") + "?"
def as_output(raw: str):
while "<" in raw:
beginning = raw.find("<")
end = raw.find(">")
raw = raw[:beginning] + raw[end + 1 :]
return raw.strip()
def answer_question(context, observation):
model = T5ForConditionalGeneration.from_pretrained(os.path.curdir)
query = as_input(context, observation)
tokenizer = T5Tokenizer.from_pretrained("t5-base")
explanation = generate(query, model, tokenizer, get_device())
return explanation
def add_dataset(folder):
if folder in datasets:
return
partitions = ["train", "dev", "test"]
data = {}
for part in partitions:
with open(os.path.join("datasets", folder, part + ".jsonl")) as file:
data[part] = [json.loads(line) for line in file.readlines()]
datasets[folder] = data
def get_model(folder=None, from_scratch=False):
if folder == None:
if from_scratch:
return T5ForConditionalGeneration(return_dict=True)
return T5ForConditionalGeneration.from_pretrained("t5-base", return_dict=True)
if not os.path.exists(os.path.join("models", folder, "config.json")):
shutil.copyfile("config.json", os.path.join("models", folder, "config.json"))
return T5ForConditionalGeneration.from_pretrained(
os.path.join("models", folder), return_dict=True
)
def get_device():
device_num = 0
if torch.cuda.is_available():
dev = torch.device(f"cuda:{device_num}")
print(f"Running on GPU no. {device_num}")
else:
dev = torch.device("cpu")
print("Running on CPU")
return dev
def get_data(folder, set, test=False):
inputs = []
labels = []
dataset = datasets[folder][set]
for item in dataset:
for question in item["questions"]:
inputs.append(as_input(item["context"], question["text"]))
labels.append(question["label"])
if test:
inputs, labels = sample_two_lists(inputs, labels, 10)
return inputs, labels
def train_model(folder, from_scratch=False, test=False):
model_location = os.path.join("models", folder, "pytorch_model.bin")
if os.path.exists(model_location):
print(f"{folder} model already exists, skipping training")
return
print(f"Training model on {folder} set(s)")
model = get_model(from_scratch=from_scratch)
tokenizer = T5Tokenizer.from_pretrained("t5-base")
optimizer = Adafactor(
model.parameters(),
lr=1e-3,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
relative_step=False,
scale_parameter=False,
warmup_init=False,
)
inputs, labels = get_data(folder, "train", test)
batch_size = 5
batches = len(inputs) // batch_size
dev = get_device()
model.to(dev)
model.train()
epochs = 10
for epoch in range(1, epochs + 1):
print(f"Running {epoch=}")
running_loss = 0
for batch in range(batches):
inputbatch = inputs[batch * batch_size : (batch + 1) * batch_size]
labelbatch = labels[batch * batch_size : (batch + 1) * batch_size]
inputbatch = tokenizer.batch_encode_plus(
inputbatch, padding=True, max_length=400, return_tensors="pt"
)["input_ids"]
labelbatch = tokenizer.batch_encode_plus(
labelbatch, padding=True, max_length=400, return_tensors="pt"
)["input_ids"]
inputbatch = inputbatch.to(dev)
labelbatch = labelbatch.to(dev)
optimizer.zero_grad()
outputs = model(input_ids=inputbatch, labels=labelbatch)
loss = outputs.loss
loss_num = loss.item()
running_loss += loss_num
if batch % 100 == 0:
print(
f"{batch=} of {batches}; {epoch=} of {epochs}; {as_percent(epoch-1+batch/batches, epochs)} done"
)
loss.backward()
optimizer.step()
running_loss = running_loss / int(batches)
print(f"Finished epoch {epoch}: {running_loss=}")
if not os.path.exists("models"):
os.mkdir("models")
if not os.path.exists(os.path.join("models", folder)):
os.mkdir(os.path.join("models", folder))
torch.save(model.state_dict(), model_location)
def test_model(model_name, test_set, test=False):
results_file = os.path.join("results", test_set, f"results_{model_name}.jsonl")
if os.path.exists(results_file):
print(f"{model_name} model already tested on {test_set} set, skipping")
return
if model_name == "Untrained":
model = T5ForConditionalGeneration.from_pretrained("t5-base", return_dict=True)
else:
if not os.path.exists(os.path.join("models", model_name, "pytorch_model.bin")):
print(f"{model_name} model doesn't exist!")
train_model(model_name, test=test)
print(f"{model_name} model trained")
model = get_model(model_name)
print(f"Testing {model_name} model on {test_set} set")
tokenizer = T5Tokenizer.from_pretrained("t5-base")
dev = get_device()
model.to(dev)
dataset = datasets[test_set]["test"]
if test:
dataset = random.sample(dataset, 1)
results = []
total = 0
successes = 0
for item in dataset:
for question in item["questions"]:
query = as_input(item["context"], question["text"])
output = generate(query, model, tokenizer, dev)
success = question["label"] == output
result = {
"id": question["id"],
"label": question["label"],
"answer": output,
"success": success,
}
results.append(result)
total += 1
successes += success
if total % 100 == 1:
print(
f"{as_percent(total, len(dataset)*len(item['questions']))} done; {as_percent(successes, total)} accuracy"
)
if not os.path.exists("results"):
os.mkdir("results")
if not os.path.exists(os.path.join("results", test_set)):
os.mkdir(os.path.join("results", test_set))
with open(results_file, "w") as file:
for result in results:
json.dump(result, file)
file.write("\n")
print(
f"FINAL RESULTS: {successes} correct out of {total} ({as_percent(successes, total)})"
)
def main():
generate_datasets()
test = True
for dataset in dataset_names:
add_dataset(dataset)
combine_datasets(3, 4) # Animal+Person-Simple
combine_datasets(5, 0) # Person+Animal-0.1
for model in models:
for dataset in dataset_names:
test_model(model, dataset, test)
print_results()
if __name__ == "__main__":
main()