Skip to content
This repository has been archived by the owner on Jul 26, 2022. It is now read-only.

Latest commit

 

History

History
215 lines (167 loc) · 7.58 KB

README.md

File metadata and controls

215 lines (167 loc) · 7.58 KB

AppSync Transformer Construct for AWS CDK

build codecov dependencies Status npm

npm version PyPI version

Notice

For CDK versions < 1.64.0 please use aws-cdk-appsync-transformer.

Why This Package

In April 2020 I wrote a blog post on using the AWS Cloud Development Kit with AppSync. I wrote my own transformer in order to emulate AWS Amplify's method of using GraphQL directives in order to template a lot of the Schema Definition Language.

This package is my attempt to convert all of that effort into a separate construct in order to clean up the process.

How Do I Use It

Example Usage

API With Default Values

import { AppSyncTransformer } from 'cdk-appsync-transformer';
...
new AppSyncTransformer(this, "my-cool-api", {
    schemaPath: 'schema.graphql'
});

schema.graphql

type Customer @model
    @auth(rules: [
        { allow: groups, groups: ["Admins"] },
        { allow: private, provider: iam, operations: [read, update] }
    ]) {
        id: ID!
        firstName: String!
        lastName: String!
        active: Boolean!
        address: String!
}

type Product @model
    @auth(rules: [
        { allow: groups, groups: ["Admins"] },
        { allow: public, provider: iam, operations: [read] }
    ]) {
        id: ID!
        name: String!
        description: String!
        price: String!
        active: Boolean!
        added: AWSDateTime!
        orders: [Order] @connection
}

type Order @model
    @key(fields: ["id", "productID"]) {
        id: ID!
        productID: ID!
        total: String!
        ordered: AWSDateTime!
}

Tested:

Experimental:

Not Yet Supported:

Authentication

User Pool Authentication

const userPool = new UserPool(this, 'my-cool-user-pool', {
    ...
})
...
const userPoolClient = new UserPoolClient(this, `${id}-client`, {
    userPool: this.userPool,
    ...
})
...
new AppSyncTransformer(this, "my-cool-api", {
    schemaPath: 'schema.graphql',
    authorizationConfig: {
        defaultAuthorization: {
            authorizationType: AuthorizationType.USER_POOL,
            userPoolConfig: {
                userPool: userPool,
                appIdClientRegex: userPoolClient.userPoolClientId,
                defaultAction: UserPoolDefaultAction.ALLOW
            }
        }
    }
});

IAM

Unauth Role: TODO

Auth Role: Unsupported. Authorized roles (Lambda Functions, EC2 roles, etc) are required to setup their own role permissions.

Functions

There are two ways to add functions as data sources (and their resolvers)

Convenience Method

addLambdaDataSourceAndResolvers will do the same thing as the manual version below. However, if you want to customize mapping templates you will have to bypass this and set up the data source and resolvers yourself

Manually

Fields with the @function directive will be accessible via appsyncTransformer.functionResolvers. It will return a map like so:

{
  'user-function': [
    { typeName: 'Query', fieldName: 'listUsers' },
    { typeName: 'Query', fieldName: 'getUser' },
    { typeName: 'Mutation', fieldName: 'createUser' },
    { typeName: 'Mutation', fieldName: 'updateUser' }
  ]
}

You can grab your function resolvers via the map and assign them your own function(s). Example might be something like:

const userFunction = new Function(...);
const userFunctionDataSource = appsyncTransformer.appsyncAPI.addLambdaDataSource('some-id', userFunction);

const dataSourceMap = {
  'user-function': userFunctionDataSource
};

for (const [functionName, resolver] of Object.entries(appsyncTransformer.functionResolvers)) {
  const dataSource = dataSourceMap[functionName];
  new Resolver(this.nestedAppsyncStack, `${resolver.typeName}-${resolver.fieldName}-resolver`, {
    api: appsyncTransformer.appsyncAPI,
    typeName: resolver.typeName,
    fieldName: resolver.fieldName,
    dataSource: dataSource,
    requestMappingTemplate: resolver.defaultRequestMappingTemplate,
    responseMappingTemplate: resolver.defaultResponseMappingTemplate // This defaults to allow errors to return to the client instead of throwing
  });
}

Table Name Map

Often you will need to access your table names in a lambda function or elsewhere. The cdk-appsync-transformer will return these values as a map of table names to cdk tokens. These tokens will be resolved at deploy time. They can be accessed via appSyncTransformer.tableNameMap.

{
  CustomerTable: '${Token[TOKEN.1300]}',
  ProductTable: '${Token[TOKEN.1346]}',
  OrderTable: '${Token[TOKEN.1392]}',
  BlogTable: '${Token[TOKEN.1442]}',
  PostTable: '${Token[TOKEN.1492]}',
  CommentTable: '${Token[TOKEN.1546]}',
  UserTable: '${Token[TOKEN.1596]}'
}

DataStore Support

  1. Pass syncEnabled: true to the AppSyncTransformerProps
  2. Generate necessary exports (see Code Generation below)

Cfn Outputs

  • appsyncGraphQLEndpointOutput - the appsync graphql endpoint

Code Generation

I've written some helpers to generate code similarly to how AWS Amplify generates statements and types. You can find the code here.

Versioning

I will attempt to align the major and minor version of this package with AWS CDK, but always check the release descriptions for compatibility.

I currently support GitHub package.json dependency version (prod)

Contributing

See CONTRIBUTING for details

License

Distributed under Apache License, Version 2.0

References