-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides2.qmd
750 lines (595 loc) · 18.9 KB
/
slides2.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
---
title: "Visualising High-dimensional Data with R"
author: "Dianne Cook <br> Monash University"
format:
revealjs:
theme:
- default
- custom.scss
slide-number: c/t
chalkboard: true
code-line-numbers: false
message: false
highlight-style: pygments
footer: "[https://statsocaus.github.io/tutorial_highd_vis/](https://statsocaus.github.io/tutorial_highd_vis/)"
---
```{r, include = FALSE}
#| label: libraries-for-participants
library(tidyverse)
library(colorspace)
library(patchwork)
library(palmerpenguins)
library(GGally)
library(mulgar)
library(conflicted)
library(mclust)
library(MASS)
library(classifly)
library(randomForest)
library(geozoo)
library(tourr)
library(countdown)
```
```{r, include = FALSE}
#| label: code-for-nice-slides
options(width = 60, digits=2)
knitr::opts_chunk$set(
fig.width = 6,
fig.height = 6,
fig.align = "center",
dev.args = list(bg = 'transparent'),
out.width = "100%",
fig.retina = 3,
echo = FALSE,
warning = FALSE,
message = FALSE,
cache = FALSE
)
theme_set(theme_bw(base_size = 14) +
theme(
aspect.ratio = 1,
plot.background = element_rect(fill = 'transparent', colour = NA),
plot.title.position = "plot",
plot.title = element_text(size = 14),
panel.background = element_rect(fill = 'transparent', colour = NA),
legend.background = element_rect(fill = 'transparent', colour = NA),
legend.key = element_rect(fill = 'transparent', colour = NA)
)
)
conflicts_prefer(dplyr::filter)
conflicts_prefer(dplyr::select)
conflicts_prefer(dplyr::slice)
conflicts_prefer(palmerpenguins::penguins)
conflicts_prefer(tourr::flea)
p_tidy <- penguins |>
select(species, bill_length_mm:body_mass_g) |>
rename(bl=bill_length_mm,
bd=bill_depth_mm,
fl=flipper_length_mm,
bm=body_mass_g) |>
na.omit()
p_tidy_std <- p_tidy |>
mutate_if(is.numeric, function(x) (x-mean(x))/sd(x))
```
## Session 2 {.transition .center .center-align}
## Outline
```{r}
plan <- tribble(~time, ~topic,
"3:00-3:45", "Understanding clusters in data using visualisation",
"3:45-4:30", "Building better classification models with visual input")
knitr::kable(plan)
```
## Clustering {.transition .center}
## Method 1: Spin-and-brush
```{r}
#| echo: true
#| eval: false
library(detourr)
set.seed(645)
detour(p_tidy_std[,2:5],
tour_aes(projection = bl:bm)) |>
tour_path(grand_tour(2), fps = 60,
max_bases=40) |>
show_scatter(alpha = 0.7,
axes = FALSE)
```
<br><center> DEMO </center>
## What are clusters?
:::: {.columns}
::: {.column}
::: {style="font-size: 70%;"}
Ideal thinking of neatly separated clusters, but it is rarely encountered in data
:::
![](https://dicook.github.io/mulgar_book/6-intro-clust_files/figure-html/fig-ideal-clusters-1.png)
:::
::: {.column}
<br><br><br>
Objective is to organize the cases into groups that are similar in some way. You need a measure of similarity (or distance).
:::
::::
## Why visualise? Which is the better?
:::: {.columns}
::: {.column style="font-size: 70%;"}
<center> Nuisance cases </center>
```{r}
#| message: false
#| warning: false
#| fig-width: 7
#| fig-height: 5
#| out-width: 100%
# Nuisance observations
set.seed(20190514)
x <- (runif(20)-0.5)*4
y <- x
d1 <- data.frame(x1 = c(rnorm(50, -3),
rnorm(50, 3), x),
x2 = c(rnorm(50, -3),
rnorm(50, 3), y),
cl = factor(c(rep("A", 50),
rep("B", 70))))
d1 <- d1 %>%
mutate_if(is.numeric, function(x) (x-mean(x))/sd(x))
# Nuisance variables
set.seed(20190512)
d2 <- data.frame(x1=c(rnorm(50, -4),
rnorm(50, 4)),
x2=c(rnorm(100)),
cl = factor(c(rep("A", 50),
rep("B", 50))))
d2 <- d2 %>%
mutate_if(is.numeric, function(x) (x-mean(x))/sd(x))
d1_hs <- hclust(dist(d1[,1:2]),
method="single")
d1 <- d1 %>%
mutate(cls = factor(cutree(d1_hs, 2)))
pc_d1s <- ggplot(d1) +
geom_point(aes(x=x1, y=x2, colour=cls),
size=2, alpha=0.8) +
scale_colour_discrete_divergingx(palette = "Zissou 1",
nmax=4, rev=TRUE) +
ggtitle("Result 1") +
theme(legend.position="none")
d1_hw <- hclust(dist(d1[,1:2]),
method="ward.D2")
d1 <- d1 %>%
mutate(clw = factor(cutree(d1_hw, 2)))
pc_d1w <- ggplot(d1) +
geom_point(aes(x=x1, y=x2, colour=clw),
size=2, alpha=0.8) +
scale_colour_discrete_divergingx(palette = "Zissou 1",
nmax=4, rev=TRUE) +
ggtitle("Result 2") +
theme(legend.position="none")
pc_d1s + pc_d1w +
plot_layout(ncol=2)
```
:::
::: {.column style="font-size: 70%;"}
::: {.fragment}
<center> Nuisance variables </center>
```{r}
#| message: false
#| warning: false
#| fig-width: 7
#| fig-height: 5
#| out-width: 100%
d2_hc <- hclust(dist(d2[,1:2]),
method="complete")
d2 <- d2 %>%
mutate(clc = factor(cutree(d2_hc, 2)))
pc_d2c <- ggplot(d2) +
geom_point(aes(x=x1, y=x2, colour=clc),
size=2, alpha=0.8) +
scale_colour_discrete_divergingx(palette = "Zissou 1",
nmax=4, rev=TRUE) +
ggtitle("Result 1") +
theme(legend.position="none")
d2_hw <- hclust(dist(d2[,1:2]),
method="ward.D2")
d2 <- d2 %>%
mutate(clw = factor(cutree(d2_hw, 2)))
pc_d2w <- ggplot(d2) +
geom_point(aes(x=x1, y=x2, colour=clw),
size=2, alpha=0.8) +
scale_colour_discrete_divergingx(palette = "Zissou 1",
nmax=4, rev=TRUE) +
ggtitle("Result 2") +
theme(legend.position="none")
pc_d2c + pc_d2w +
plot_layout(ncol=2)
```
:::
:::
::::
::: {.fragment style="font-size: 70%;"}
To decide on a best result, you need to see how it [divides the data into clusters]{.orange2}. The cluster statistics, like dendrogram, or cluster summaries, or gap statistics might all look good but the result is bad. You need to see the [model in the data space]{.orange2}!
:::
## Model-based clustering [(1/3)]{.f70}
:::: {.columns}
::: {.column}
Model-based clustering fits a multivariate normal mixture model to the data.
:::
::: {.column}
::: {.fragment style="font-size: 70%;"}
$$
\Sigma_k = \lambda_kD_kA_kD_k^\top, ~~~k=1, \dots, g
$$
where
$\Sigma_k$ is the variance-covariance of cluster $k$,
$g=$number of clusters,
$D_k$ describes the orientation of a cluster,
$A_k$ describes the variance in different variables,
$\lambda_k$ is an overall size.
:::
:::
::::
## Model-based clustering [(2/3)]{.f70}
:::: {.columns}
::: {.column style="font-size: 70%;"}
Clustering this data. What do you expect?
![](gifs/penguins1.gif){width=400}
Can we assume the shape of the clusters is elliptical?
:::
::: {.column style="font-size: 70%;"}
::: {.fragment}
```{r}
#| fig-width: 5
#| fig-height: 5
#| out-width: 100%
#| fig-align: "center"
p_BIC <- mclustBIC(p_tidy[,2:5])
ggmc <- ggmcbic(p_BIC, cl=2:9, top=7) +
scale_color_discrete_divergingx(palette = "Roma")
ggmc
```
<center>[Volume, Shape, Orientation]{.f50}</center>
:::
:::
::::
## Model-based clustering [(3/3)]{.f70}
:::: {.columns}
::: {.column style="font-size: 70%;"}
```{r}
#| eval: FALSE
p_mc <- Mclust(p_tidy[,2:5],
G=4,
modelNames = "VEE")
p_mce <- mc_ellipse(ps_mc)
p_cl <- p_tidy
p_cl$cl <- factor(p_mc$classification)
p_mc_data <- p_cl %>%
select(bl:bm, cl) %>%
mutate(type = "data") %>%
bind_rows(bind_cols(p_mce$ell,
type=rep("ellipse",
nrow(p_mce$ell)))) %>%
mutate(type = factor(type))
```
```{r}
#| eval: FALSE
animate_xy(p_mc_data[,1:4],
col=p_mc_data$cl,
pch=c(4, 20 )[as.numeric(p_mc_data$type)],
axes="off")
load("data/penguins_tour_path.rda")
render_gif(p_mc_data[,1:4],
planned_tour(pt1),
display_xy(col=p_mc_data$cl,
pch=c(4, 20)[
as.numeric(p_mc_data$type)],
axes="off",
half_range = 0.7),
gif_file="gifs/penguins_best_mc.gif",
frames=500,
loop=FALSE)
p_mc <- Mclust(p_tidy[,2:5],
G=3,
modelNames = "EEE")
p_mce <- mc_ellipse(p_mc)
p_cl <- p_tidy
p_cl$cl <- factor(p_mc$classification)
p_mc_data <- p_cl %>%
select(bl:bm, cl) %>%
mutate(type = "data") %>%
bind_rows(bind_cols(p_mce$ell,
type=rep("ellipse",
nrow(p_mce$ell)))) %>%
mutate(type = factor(type))
animate_xy(p_mc_data[,1:4],
col=p_mc_data$cl,
pch=c(4, 20)[as.numeric(p_mc_data$type)],
axes="off")
# Save the animated gif
load("data/penguins_tour_path.rda")
render_gif(p_mc_data[,1:4],
planned_tour(pt1),
display_xy(col=p_mc_data$cl,
pch=c(4, 20)[
as.numeric(p_mc_data$type)],
axes="off",
half_range = 0.7),
gif_file="gifs/penguins_simpler_mc.gif",
frames=500,
loop=FALSE)
```
Four-cluster VEE
![](gifs/penguins_best_mc.gif){fig.align="center" width=400}
:::
::: {.column style="font-size: 70%;"}
::: {.fragment}
Three-cluster EEE
![](gifs/penguins_simpler_mc.gif){fig.align="center" width=400}
:::
:::
::::
Models (ellipses) are overlaid on the data. Which is the best fit?
## How do you draw ellipses in high-d?
:::: {.columns}
::: {.column style="font-size: 70%;"}
Extract the estimated model parameters
```{r}
#| echo: true
p_mc <- Mclust(
p_tidy[,2:5],
G=3,
modelNames = "EEE")
p_mc$parameters$mean
p_mc$parameters$variance$sigma[,,1]
```
:::
::: {.column style="font-size: 70%;"}
Generate data that represents the ellipse(s) to overlay on the data.
```{r}
#| echo: true
p_mce <- mc_ellipse(p_mc)
```
- Sample points uniformly on a pD sphere
- Transform into an ellipse using the inverse variance-covariance matrix
```{r}
#| echo: false
#| fig-width: 6
#| fig-height: 3
s <- geozoo::sphere.hollow(p=2)$points |>
as.data.frame()
s_p <- ggplot(s, aes(x=V1, y=V2)) +
geom_point(colour="#EC5C00") +
theme(axis.title = element_blank(),
axis.text = element_blank())
ell <- mulgar::gen_vc_ellipse(matrix(c(1, 0.7, 0.7, 1), ncol=2, byrow=T)) |> as.data.frame()
e_p <- ggplot(ell, aes(x=V1, y=V2)) +
geom_point(colour="#EC5C00") +
theme(axis.title = element_blank(),
axis.text = element_blank())
s_p + e_p + plot_layout(ncol=2)
```
:::
::::
## [Your turn]{.orange2}
Use the spin-and-brush approach to extract the clusters from the `c1` data.
`r countdown(minutes = 5, seconds = 0)`
## Classification {.transition .center}
## What should you visualise?
- Understand any clustering related to the known classes.
- Obtain a sense of where [boundaries]{.orange2} might be placed.
- Examine where the fitted model fits the data well, and where poorly.
- Understand the [misclassifications]{.orange2}, whether they are reasonable given uncertainty in the data, or due to an ill-fitting or poorly specified model.
- Understand what can happen with model fitting and pattern recognition with sparse data.
## Example: Linear DA
:::: {.columns}
::: {.column}
![](gifs/penguins_lda1.gif){fig.align="center" width=400}
:::
::: {.column}
```{r}
#| fig-width: 4
#| fig-height: 4
#| out-width: 90%
p_lda <- lda(species ~ ., p_tidy[,1:5], prior = c(1/3, 1/3, 1/3))
p_lda_pred <- predict(p_lda, p_tidy)
p_lda_pred_x1 <- data.frame(p_lda_pred$x)
p_lda_pred_x1$species <- p_tidy$species
ggplot(p_lda_pred_x1,
aes(x=LD1, y=LD2,
colour=species)) +
geom_point(alpha=0.5) +
scale_color_discrete_divergingx("Zissou 1") +
# scale_shape_manual(values=c(1, 2, 3)) +
theme(legend.position = "bottom",
legend.title = element_blank())
```
:::
::::
Linear discriminant analysis is the ideal classifier for this data.
## Random forests [(1/2)]{.f70}
:::: {.columns}
::: {.column style="font-size: 70%;"}
A random forest is the simplest classifier to fit for complicated boundaries. It is built from multiple trees generated by randomly sampling the cases and the variables. The random sampling (with replacement) of cases has the fortunate effect of creating a training ("in-bag") and a test (["out-of-bag"]{.orange2}) sample for each tree computed. The most beautiful results are obtaining diagnostics that help us to assess the model are the [votes]{.orange2}, the measure of [variable importance]{.orange2}, and the [proximity matrix]{.orange2}.
:::
::: {.column style="font-size: 70%;"}
```{r}
data(bushfires)
bushfires_sub <- bushfires[,c(5, 8:45, 48:55, 57:60)] %>%
mutate(cause = factor(cause))
bushfires_rf <- randomForest(cause~.,
data=bushfires_sub,
importance=TRUE)
bushfires_rf
```
:::
::::
## Random forests [(2/2)]{.f70}
:::: {.columns}
::: {.column style="font-size: 70%;"}
The [votes matrix]{.orange2} can be considered to be predictive probabilities, where the values for each observation sum to 1. With 3 classes it is a 2D triangle. For 4 or more classes it is a [simplex]{.orange2} and can be examined in a tour.
<center>
![](https://dicook.github.io/mulgar_book/15-forests_files/figure-html/fig-p-votes-ggplot-html-1.png){width=300}
</center>
::: {.f50}
<center> Votes matrix for the random forest fit on penguins</center>
:::
:::
::: {.column style="font-size: 60%;"}
::: {.fragment}
Votes matrix for bushfire model fit
```{r}
#| code-fold: true
#| eval: false
#| echo: true
# Create votes matrix data
bushfires_rf_votes <- bushfires_rf$votes %>%
as_tibble() %>%
mutate(cause = bushfires_sub$cause)
# Project 4D into 3D
proj <- t(geozoo::f_helmert(4)[-1,])
b_rf_v_p <- as.matrix(bushfires_rf_votes[,1:4]) %*% proj
colnames(b_rf_v_p) <- c("x1", "x2", "x3")
b_rf_v_p <- b_rf_v_p %>%
as.data.frame() %>%
mutate(cause = bushfires_sub$cause)
# Add simplex
simp <- simplex(p=3)
sp <- data.frame(simp$points)
colnames(sp) <- c("x1", "x2", "x3")
sp$cause = ""
b_rf_v_p_s <- bind_rows(sp, b_rf_v_p) %>%
mutate(cause = factor(cause))
labels <- c("accident" , "arson",
"burning_off", "lightning",
rep("", nrow(b_rf_v_p)))
animate_xy(b_rf_v_p_s[,1:3], col = b_rf_v_p_s$cause,
axes = "off", half_range = 1.3,
edges = as.matrix(simp$edges),
obs_labels = labels)
```
<center>
![](gifs/bushfires_votes.gif){width=400}
</center>
:::
:::
::::
## Exploring misclassifications
::: {.f70}
```{r}
#| echo: true
#| eval: false
library(crosstalk)
library(plotly)
library(viridis)
p_cl <- p_tidy_std |>
mutate(pspecies = predict(p_lda, p_tidy_std)$class) |>
dplyr::select(bl:bm, species, pspecies) |>
mutate(sp_jit = jitter(as.numeric(species)),
psp_jit = jitter(as.numeric(pspecies)))
p_cl_shared <- SharedData$new(p_cl)
detour_plot <- detour(p_cl_shared, tour_aes(
projection = bl:bm,
colour = species)) |>
tour_path(grand_tour(2),
max_bases=50, fps = 60) |>
show_scatter(alpha = 0.9, axes = FALSE,
width = "100%", height = "450px")
conf_mat <- plot_ly(p_cl_shared,
x = ~psp_jit,
y = ~sp_jit,
color = ~species,
colors = viridis_pal(option = "D")(3),
height = 450) |>
highlight(on = "plotly_selected",
off = "plotly_doubleclick") %>%
add_trace(type = "scatter",
mode = "markers")
bscols(
detour_plot, conf_mat,
widths = c(5, 6)
)
```
:::
<br><center> DEMO </center>
## [Your turn]{.orange2}
Explore the misclassifications in the [random forest fit]{.orange2} of the [penguins]{.orange2} data, using the code provided in the `slides2.R` file.
`r countdown(minutes = 5, seconds = 0)`
## Cautions about high-dimensions
:::: {.columns}
::: {.column style="font-size: 70%;"}
Space is big.
What might appear to be [structure]{.orange2} is only [sampling variability]{.orange2}.
```{r}
#| fig-width: 5
#| fig-height: 4
#| out-width: 80%
w <- matrix(runif(48*40), ncol=40) |>
as.data.frame() |>
mutate(cl = factor(rep(c("A", "B", "C", "D"), rep(12, 4))))
w_lda <- lda(cl~., data=w)
w_pred <- predict(w_lda, w, dimen=2)$x
w_p <- w |>
mutate(LD1 = w_pred[,1],
LD2 = w_pred[,2])
ggplot(w_p, aes(x=LD1, y=LD2, colour=cl)) +
geom_point() +
scale_colour_discrete_divergingx(palette = "Zissou 1",
nmax=4, rev=TRUE)
```
<center>
$n=48, p=40$
</center>
```{r}
#| eval: false
animate_xy(w[,1:40], guided_tour(lda_pp(w$cl)),
col=w$cl,
sphere=TRUE,
axes="off",
half_range=4)
```
:::
::: {.column style="font-size: 70%;"}
::: {.fragment}
Permutation is your friend, for high-dimensional data analysis.
Permute the class labels.
```{r}
#| echo: true
set.seed(951)
ws <- w |>
mutate(cl = sample(cl))
```
```{r}
#| fig-width: 5
#| fig-height: 4
#| out-width: 80%
ws_lda <- lda(cl~., data=ws)
ws_pred <- predict(ws_lda, ws, dimen=2)$x
ws_p <- ws |>
mutate(LD1 = ws_pred[,1],
LD2 = ws_pred[,2])
ggplot(ws_p, aes(x=LD1, y=LD2, colour=cl)) +
geom_point() +
scale_colour_discrete_divergingx(palette = "Zissou 1",
nmax=4, rev=TRUE)
```
:::
:::
::::
## Other compelling pursuits
:::: {.columns}
::: {.column}
Explore and compare the boundaries of different models using the slice tour.
![](https://dicook.github.io/mulgar_book/gifs/penguins_lda_boundaries.gif){width=300}
:::
::: {.column}
Dissect and explore the operation of a neural network.
![](https://dicook.github.io/mulgar_book/images/penguins-nn-boundaries-1.png)
:::
:::
## Where to learn more
All of the material presented today comes from
[Cook and Laa (2024) Interactively exploring high-dimensional data and models in R](https://dicook.github.io/mulgar_book/)
Software:
[![](https://ggobi.github.io/tourr/reference/figures/logo.png){width=14%}](https://ggobi.github.io/tourr/)
[![](https://numbats.github.io/woylier/logo.png){width=13%}](https://numbats.github.io/woylier/)$~~$
[![](https://nspyrison.github.io/spinifex/reference/figures/spinifex_hex.png){width=11%}](https://nspyrison.github.io/spinifex/)$~~$
[![](https://huizezhang-sherry.github.io/ferrn/reference/figures/logo.png){width=11%}](https://huizezhang-sherry.github.io/ferrn/)$~~$
[![](https://casperhart.github.io/detourr/logo.png){width=11%}](https://casperhart.github.io/detourr/)$~~$
[![](images/langevitour.png){width=11%}](https://logarithmic.net/langevitour/index.html)
[![](images/liminal.png){width=11%}](https://sa-lee.github.io/liminal/)
## End of session 2 {.transition .center}
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.