-
Notifications
You must be signed in to change notification settings - Fork 0
/
slides1.html
1448 lines (1340 loc) · 66.8 KB
/
slides1.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en"><head>
<script src="slides1_files/libs/clipboard/clipboard.min.js"></script>
<script src="slides1_files/libs/quarto-html/tabby.min.js"></script>
<script src="slides1_files/libs/quarto-html/popper.min.js"></script>
<script src="slides1_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="slides1_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="slides1_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="slides1_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="slides1_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.4.549">
<meta name="author" content="Dianne Cook Monash University">
<title>Visualising High-dimensional Data with R</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="slides1_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="slides1_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="slides1_files/libs/revealjs/dist/theme/quarto.css">
<link href="slides1_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="slides1_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="slides1_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="slides1_files/libs/revealjs/plugin/reveal-chalkboard/font-awesome/css/all.css" rel="stylesheet">
<link href="slides1_files/libs/revealjs/plugin/reveal-chalkboard/style.css" rel="stylesheet">
<link href="slides1_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
padding-bottom: 0.5rem;
margin-bottom: 0;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
<link href="slides1_files/libs/countdown-0.5.0/countdown.css" rel="stylesheet">
<script src="slides1_files/libs/countdown-0.5.0/countdown.js"></script>
</head>
<body class="quarto-light">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Visualising High-dimensional Data with R</h1>
<div class="quarto-title-authors">
<div class="quarto-title-author">
<div class="quarto-title-author-name">
Dianne Cook <br> Monash University
</div>
</div>
</div>
</section>
<section id="session-1" class="slide level2 transition center center-align">
<h2>Session 1</h2>
</section>
<section id="outline" class="slide level2">
<h2>Outline</h2>
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<table>
<colgroup>
<col style="width: 9%">
<col style="width: 90%">
</colgroup>
<thead>
<tr class="header">
<th style="text-align: left;">time</th>
<th style="text-align: left;">topic</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: left;">1:00-1:20</td>
<td style="text-align: left;">Introduction: What is high-dimensional data, why visualise and overview of methods</td>
</tr>
<tr class="even">
<td style="text-align: left;">1:20-1:45</td>
<td style="text-align: left;">Basics of linear projections, and recognising high-d structure</td>
</tr>
<tr class="odd">
<td style="text-align: left;">1:45-2:30</td>
<td style="text-align: left;">Effectively reducing your data dimension, in association with non-linear dimension reduction</td>
</tr>
<tr class="even">
<td style="text-align: left;">2:30-3:00</td>
<td style="text-align: left;">BREAK</td>
</tr>
</tbody>
</table>
</div>
</div>
</section>
<section id="introduction" class="slide level2 transition center center-align">
<h2>Introduction</h2>
</section>
<section id="what-is-high-dimensional-space" class="slide level2">
<h2>What is high-dimensional space?</h2>
<center>
<img src="https://dicook.github.io/mulgar_book/1-intro_files/figure-html/fig-dimension-cubes-1.png" width="90%">
</center>
<p>Increasing dimension adds an additional orthogonal axis.</p>
<div class="fragment f50">
<p>If you want more high-dimensional shapes there is an R package, <a href="http://schloerke.com/geozoo/all/">geozoo</a>, which will generate cubes, spheres, simplices, mobius strips, torii, boy surface, klein bottles, cones, various polytopes, …</p>
<p>And read or watch <a href="https://en.wikipedia.org/wiki/Flatland">Flatland: A Romance of Many Dimensions (1884) Edwin Abbott</a>.</p>
</div>
</section>
<section id="notation-data" class="slide level2">
<h2>Notation: Data</h2>
<p><span class="math display">\[\begin{eqnarray*}
X_{~n\times p} =
[X_{~1}~X_{~2}~\dots~X_{~p}]_{~n\times p} = \left[ \begin{array}{cccc}
x_{~11} & x_{~12} & \dots & x_{~1p} \\
x_{~21} & x_{~22} & \dots & x_{~2p}\\
\vdots & \vdots & & \vdots \\
x_{~n1} & x_{~n2} & \dots & x_{~np} \end{array} \right]_{~n\times p}
\end{eqnarray*}\]</span></p>
</section>
<section id="notation-projection" class="slide level2">
<h2>Notation: Projection</h2>
<p><span class="math display">\[\begin{eqnarray*}
A_{~p\times d} = \left[ \begin{array}{cccc}
a_{~11} & a_{~12} & \dots & a_{~1d} \\
a_{~21} & a_{~22} & \dots & a_{~2d}\\
\vdots & \vdots & & \vdots \\
a_{~p1} & a_{~p2} & \dots & a_{~pd} \end{array} \right]_{~p\times d}
\end{eqnarray*}\]</span></p>
</section>
<section id="notation-projected-data" class="slide level2">
<h2>Notation: Projected data</h2>
<p><span class="math display">\[\begin{eqnarray*}
Y_{~n\times d} = XA = \left[ \begin{array}{cccc}
y_{~11} & y_{~12} & \dots & y_{~1d} \\
y_{~21} & y_{~22} & \dots & y_{~2d}\\
\vdots & \vdots & & \vdots \\
y_{~n1} & y_{~n2} & \dots & y_{~nd} \end{array} \right]_{~n\times d}
\end{eqnarray*}\]</span></p>
</section>
<section id="why-12" class="slide level2">
<h2>Why? <span class="f70">(1/2)</span></h2>
<div class="columns">
<div class="column">
<p><br> Scatterplot matrix</p>
<p><br><br> Here, we see <span class="blue2">linear association</span>, <span class="blue2">clumping</span> and <span class="blue2">clustering</span>, potentially some <span class="blue2">outliers</span>.</p>
</div><div class="column">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/load-penguins-1.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
</figure>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="why-22" class="slide level2">
<h2>Why? <span class="f70">(2/2)</span></h2>
<div class="columns">
<div class="column" style="width:50%;">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/visible-1.png" class="quarto-figure quarto-figure-center" style="width:80.0%"></p>
</figure>
</div>
</div>
</div>
</div><div class="column" style="width:50%;">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/invisible-1.png" class="quarto-figure quarto-figure-center" style="width:80.0%"></p>
</figure>
</div>
</div>
</div>
</div>
</div>
<div style="font-size: 80%;">
<p>There is an outlier in the data on the right, like the one in the left, but it is <span class="orange2">hidden in a combination of variables</span>. It’s not visible in any pair of variables.</p>
</div>
</section>
<section id="and-help-to-see-the-data-as-a-whole" class="slide level2">
<h2>And help to see the data as a whole</h2>
<div class="columns">
<div class="column">
<p>To avoid misinterpretation …</p>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="images/elephant-guided.png" class="quarto-figure quarto-figure-center" width="500"></p>
</figure>
</div>
</div><div class="column">
<p>… see the bigger picture!</p>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="images/elephant-grand.png" class="quarto-figure quarto-figure-center" width="500"></p>
</figure>
</div>
</div>
</div>
<div class="f50">
<p>Image: <a href="https://sketchplanations.com/the-overview-effect">Sketchplanations</a>.</p>
</div>
</section>
<section id="tours-of-linear-projections" class="slide level2">
<h2>Tours of linear projections</h2>
<div class="columns">
<div class="column center" style="font-size: 50%;">
<p><img data-src="gifs/explain_1d.gif" alt="1D tour of 2D data. Data has two clusters, we see bimodal density in some 1D projections." width="500"></p>
<center>
<p>Data is 2D: <span class="math inline">\(~~p=2\)</span></p>
Projection is 1D: <span class="math inline">\(~~d=1\)</span>
</center>
<p><span class="math display">\[\begin{eqnarray*}
A_{~2\times 1} = \left[ \begin{array}{c}
a_{~11} \\
a_{~21}\\
\end{array} \right]_{~2\times 1}
\end{eqnarray*}\]</span></p>
</div><div class="column" style="font-size: 70%;">
<div class="fragment">
<p><br> Notice that the values of <span class="math inline">\(A\)</span> change between (-1, 1). All possible values being shown during the tour.</p>
<p><img data-src="images/explain_1d_axes_1_0.jpg" style="width:30.0%"> <img data-src="images/explain_1d_axes_7_7.jpg" style="width:30.0%"> <img data-src="images/explain_1d_axes_-7_7.jpg" style="width:30.0%"></p>
<p><span style="font-size: 50%;"> <span class="math display">\[\begin{eqnarray*}
A = \left[ \begin{array}{c}
1 \\
0\\
\end{array} \right]
~~~~~~~~~~~~~~~~
A = \left[ \begin{array}{c}
0.7 \\
0.7\\
\end{array} \right]
~~~~~~~~~~~~~~~~
A = \left[ \begin{array}{c}
0.7 \\
-0.7\\
\end{array} \right]
\end{eqnarray*}\]</span></span></p>
</div>
<div class="fragment">
<p><br> watching the 1D shadows we can see:</p>
<ul>
<li>unimodality</li>
<li>bimodality, there are two clusters.</li>
</ul>
</div>
<div class="fragment">
<p><span style="color:#EC5C00"> What does the 2D data look like? Can you sketch it? </span></p>
</div>
</div>
</div>
</section>
<section id="tours-of-linear-projections-1" class="slide level2" data-visibility="uncounted">
<h2>Tours of linear projections</h2>
<div class="columns">
<div class="column" style="width:60%;">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/unnamed-chunk-9-1.png" class="quarto-figure quarto-figure-center" style="width:70.0%" alt="Scatterplot showing the 2D data having two clusters."></p>
</figure>
</div>
</div>
</div>
</div><div class="column" style="width:30%;">
<p><br><br> <span style="color:#EC5C00"> ⟵ <br> The 2D data </span></p>
<div class="fragment">
<p><img data-src="images/explain_1d_annotated.png" alt="2D two cluster data with lines marking particular 1D projections, with small plots showing the corresponding 1D density."></p>
</div>
</div>
</div>
</section>
<section id="tours-of-linear-projections-2" class="slide level2">
<h2>Tours of linear projections</h2>
<div class="columns">
<div class="column center" style="font-size: 50%;">
<p><img data-src="gifs/explain_2d.gif" alt="Grand tour showing points on the surface of a 3D torus." width="500"></p>
<p>Data is 3D: <span class="math inline">\(p=3\)</span></p>
<p>Projection is 2D: <span class="math inline">\(d=2\)</span></p>
<p><span class="math display">\[\begin{eqnarray*}
A_{~3\times 2} = \left[ \begin{array}{cc}
a_{~11} & a_{~12} \\
a_{~21} & a_{~22}\\
a_{~31} & a_{~32}\\
\end{array} \right]_{~3\times 2}
\end{eqnarray*}\]</span></p>
</div><div class="column" style="font-size: 70%;">
<div class="fragment">
<p><br><br><br><br><br><br> Notice that the values of <span class="math inline">\(A\)</span> change between (-1, 1). All possible values being shown during the tour.</p>
</div>
<div class="fragment">
<p>See:</p>
<ul>
<li>circular shapes</li>
<li>some transparency, reveals middle</li>
<li>hole in in some projections</li>
<li>no clustering</li>
</ul>
</div>
</div>
</div>
</section>
<section id="tours-of-linear-projections-3" class="slide level2">
<h2>Tours of linear projections</h2>
<div class="columns">
<div class="column center" style="font-size: 40%;">
<p><img data-src="gifs/penguins1.gif" alt="Grand tour showing the 4D penguins data. Two clusters are easily seen, and a third is plausible." width="500"></p>
<p>Data is 4D: <span class="math inline">\(p=4\)</span></p>
<p>Projection is 2D: <span class="math inline">\(d=2\)</span></p>
<p><span class="math display">\[\begin{eqnarray*}
A_{~4\times 2} = \left[ \begin{array}{cc}
a_{~11} & a_{~12} \\
a_{~21} & a_{~22}\\
a_{~31} & a_{~32}\\
a_{~41} & a_{~42}\\
\end{array} \right]_{~4\times 2}
\end{eqnarray*}\]</span></p>
</div><div class="column" style="font-size: 70%;">
<p><br> How many clusters do you see?</p>
<div class="fragment">
<ul>
<li>three, right?</li>
<li>one separated, and two very close,</li>
<li>and they each have an elliptical shape.</li>
</ul>
</div>
<div class="fragment">
<ul>
<li>do you also see an outlier or two?</li>
</ul>
</div>
</div>
</div>
</section>
<section id="intuitively-tours-are-like" class="slide level2">
<h2>Intuitively, tours are like …</h2>
<center>
<img src="https://dicook.github.io/mulgar_book/images/shadow_puppets.png" width="90%">
</center>
</section>
<section id="anomaly-is-no-longer-hidden" class="slide level2">
<h2>Anomaly is no longer hidden</h2>
<div class="columns">
<div class="column">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/invisible-1.png" class="quarto-figure quarto-figure-center" style="width:70.0%"></p>
</figure>
</div>
</div>
</div>
</div><div class="column">
<center>
<p><img data-src="gifs/anomaly2.gif" width="500"></p>
Wait for it!
</center>
</div>
</div>
</section>
<section id="how-to-use-a-tour-in-r" class="slide level2">
<h2>How to use a tour in R</h2>
<div class="columns">
<div class="column" style="font-size: 80%;">
<p>This is a <span class="orange2">basic tour</span>, which will run in your RStudio plot window.</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tourr)</span>
<span id="cb1-2"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">animate_xy</span>(flea[, <span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>], <span class="at">rescale=</span><span class="cn">TRUE</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div class="fragment">
<p>This data has a class variable, <code>species</code>.</p>
<div class="f70">
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="" aria-hidden="true" tabindex="-1"></a>flea <span class="sc">|></span> <span class="fu">slice_head</span>(<span class="at">n=</span><span class="dv">3</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code> species tars1 tars2 head aede1 aede2 aede3
1 Concinna 191 131 53 150 15 104
2 Concinna 185 134 50 147 13 105
3 Concinna 200 137 52 144 14 102</code></pre>
</div>
</div>
</div>
<p>Use this to <span class="orange2">colour points</span> with:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">animate_xy</span>(flea[, <span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>], </span>
<span id="cb4-2"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> flea<span class="sc">$</span>species, </span>
<span id="cb4-3"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">rescale=</span><span class="cn">TRUE</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div><div class="column" style="font-size: 80%;">
<div class="fragment">
<p>You can specifically <span class="orange2">guide</span> the tour choice of projections using</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">animate_xy</span>(flea[, <span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>], </span>
<span id="cb5-2"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">tour_path =</span> <span class="fu">guided_tour</span>(<span class="fu">holes</span>()), </span>
<span id="cb5-3"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> flea<span class="sc">$</span>species, </span>
<span id="cb5-4"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">rescale =</span> <span class="cn">TRUE</span>, </span>
<span id="cb5-5"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">sphere =</span> <span class="cn">TRUE</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
<div class="fragment">
<p>and you can <span class="orange2">manually</span> choose a variable to control with:</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">915</span>)</span>
<span id="cb6-2"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">animate_xy</span>(flea[, <span class="dv">1</span><span class="sc">:</span><span class="dv">6</span>], </span>
<span id="cb6-3"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="fu">radial_tour</span>(<span class="fu">basis_random</span>(<span class="dv">6</span>, <span class="dv">2</span>), </span>
<span id="cb6-4"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">mvar =</span> <span class="dv">6</span>), </span>
<span id="cb6-5"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">rescale =</span> <span class="cn">TRUE</span>,</span>
<span id="cb6-6"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">col =</span> flea<span class="sc">$</span>species)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div>
</div>
</section>
<section id="how-to-save-a-tour" class="slide level2">
<h2>How to save a tour</h2>
<div class="columns">
<div class="column">
<center>
<img data-src="gifs/penguins1.gif" alt="Grand tour showing the 4D penguins data. Two clusters are easily seen, and a third is plausible." width="500">
</center>
</div><div class="column">
<p><span class="f80">To save as an animated gif:</span></p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">645</span>)</span>
<span id="cb7-2"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">render_gif</span>(penguins_sub[,<span class="dv">1</span><span class="sc">:</span><span class="dv">4</span>],</span>
<span id="cb7-3"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="fu">grand_tour</span>(),</span>
<span id="cb7-4"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="fu">display_xy</span>(<span class="at">col=</span><span class="st">"#EC5C00"</span>,</span>
<span id="cb7-5"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">half_range=</span><span class="fl">3.8</span>, </span>
<span id="cb7-6"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">axes=</span><span class="st">"bottomleft"</span>, <span class="at">cex=</span><span class="fl">2.5</span>),</span>
<span id="cb7-7"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">gif_file =</span> <span class="st">"gifs/penguins1.gif"</span>,</span>
<span id="cb7-8"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">apf =</span> <span class="dv">1</span><span class="sc">/</span><span class="dv">60</span>,</span>
<span id="cb7-9"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">frames =</span> <span class="dv">1500</span>,</span>
<span id="cb7-10"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">width =</span> <span class="dv">500</span>, </span>
<span id="cb7-11"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">height =</span> <span class="dv">400</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div>
</section>
<section id="your-turn" class="slide level2">
<h2><span class="orange2">Your turn</span></h2>
<p>Use a grand tour on the data set <code>c1</code> in the <code>mulgar</code> package. What shapes do you see?</p>
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tourr)</span>
<span id="cb8-2"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(mulgar)</span>
<span id="cb8-3"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">animate_xy</span>(c1)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p><br><br> Have a look at <code>c3</code> or <code>c7</code> also. How are the structures different.</p>
<p></p><div class="countdown" id="timer_f14549a2" data-update-every="1" tabindex="0" style="right:0;bottom:0;"> <div class="countdown-controls"><button class="countdown-bump-down">−</button><button class="countdown-bump-up">+</button></div> <code class="countdown-time"><span class="countdown-digits minutes">05</span><span class="countdown-digits colon">:</span><span class="countdown-digits seconds">00</span></code> </div><p></p>
</section>
<section id="dimension-reduction" class="slide level2 transition center center-align">
<h2>Dimension reduction</h2>
</section>
<section id="what-is-dimensionality" class="slide level2">
<h2>What is dimensionality?</h2>
<img data-src="slides1_files/figure-revealjs/unnamed-chunk-24-1.png" class="quarto-figure quarto-figure-center r-stretch" style="width:100.0%"><p>When an axis extends out of a direction where the points are collapsed, it means that this variable is partially responsible for the reduced dimension.</p>
</section>
<section id="in-high-dimensions" class="slide level2">
<h2>In high-dimensions</h2>
<div class="columns">
<div class="column" style="width:33%;">
<center>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="https://dicook.github.io/mulgar_book/gifs/plane.gif" width="300"></p>
<figcaption>2D plane in 5D</figcaption>
</figure>
</div>
</center>
</div><div class="column" style="width:33%;">
<div class="fragment">
<center>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="https://dicook.github.io/mulgar_book/gifs/box.gif" width="300"></p>
<figcaption>3D plane in 5D</figcaption>
</figure>
</div>
</center>
</div>
</div><div class="column" style="width:33%;">
<div class="fragment">
<center>
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="https://dicook.github.io/mulgar_book/gifs/cube5d.gif" width="300"></p>
<figcaption>5D plane in 5D</figcaption>
</figure>
</div>
</center>
</div>
</div>
</div>
<div class="fragment">
<p>Principal component analysis (PCA) will detect these dimensionalities.</p>
</div>
</section>
<section id="example-womens-track-records-13" class="slide level2">
<h2>Example: womens’ track records <span class="f70">(1/3)</span></h2>
<div class="columns">
<div class="column">
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/unnamed-chunk-26-1.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
</figure>
</div>
</div>
</div>
<p><span class="f50"><em>Source</em>: Johnson and Wichern, Applied multivariate analysis</span></p>
</div><div class="column">
<div class="fragment">
<center>
<img data-src="gifs/track.gif" width="600">
</center>
</div>
</div>
</div>
</section>
<section id="example-pca-summary-23" class="slide level2">
<h2>Example: PCA summary <span class="f70">(2/3)</span></h2>
<div class="columns">
<div class="column">
<p>Variances/eigenvalues</p>
<div class="cell" data-layout-align="center">
<div class="cell-output cell-output-stdout">
<pre><code>[1] 5.806 0.654 0.300 0.125 0.054 0.039 0.022</code></pre>
</div>
</div>
<p>Component coefficients</p>
<div class="cell" data-layout-align="center">
<div class="cell-output cell-output-stdout">
<pre><code> PC1 PC2 PC3 PC4
m100 0.37 0.49 -0.286 0.319
m200 0.37 0.54 -0.230 -0.083
m400 0.38 0.25 0.515 -0.347
m800 0.38 -0.16 0.585 -0.042
m1500 0.39 -0.36 0.013 0.430
m3000 0.39 -0.35 -0.153 0.363
marathon 0.37 -0.37 -0.484 -0.672</code></pre>
</div>
</div>
</div><div class="column">
<p>How many PCs?</p>
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/unnamed-chunk-31-1.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
</figure>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="example-visualise-33" class="slide level2">
<h2>Example: Visualise <span class="f70">(3/3)</span></h2>
<div class="columns">
<div class="column">
<p><span class="f70">Biplot: data in the model space</span></p>
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/unnamed-chunk-32-1.png" class="quarto-figure quarto-figure-center" style="width:100.0%"></p>
</figure>
</div>
</div>
</div>
</div><div class="column">
<p><span class="f70">2D model in data space</span></p>
<center>
<img data-src="gifs/track_model.gif" width="350">
</center>
<div class="f60">
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="" aria-hidden="true" tabindex="-1"></a>track_model <span class="ot"><-</span> mulgar<span class="sc">::</span><span class="fu">pca_model</span>(track_std_pca, <span class="at">d=</span><span class="dv">2</span>, <span class="at">s=</span><span class="dv">2</span>)</span>
<span id="cb11-2"><a href="" aria-hidden="true" tabindex="-1"></a>track_all <span class="ot"><-</span> <span class="fu">rbind</span>(track_model<span class="sc">$</span>points, track_std[,<span class="dv">1</span><span class="sc">:</span><span class="dv">7</span>])</span>
<span id="cb11-3"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">animate_xy</span>(track_all, <span class="at">edges=</span>track_model<span class="sc">$</span>edges,</span>
<span id="cb11-4"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">edges.col=</span><span class="st">"#E7950F"</span>, </span>
<span id="cb11-5"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">edges.width=</span><span class="dv">3</span>, </span>
<span id="cb11-6"><a href="" aria-hidden="true" tabindex="-1"></a> <span class="at">axes=</span><span class="st">"off"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div>
</div>
</section>
<section id="non-linear-dimension-reduction-12" class="slide level2">
<h2>Non-linear dimension reduction <span class="f70">(1/2)</span></h2>
<div class="columns">
<div class="column f60">
<p>Find some low-dimensional layout of points which approximates the distance between points in high-dimensions, with the purpose being to have a <span class="orange2">useful representation that reveals high-dimensional patterns</span>, like clusters.</p>
<p><span class="blue2">Multidimensional scaling (MDS)</span> is the original approach:</p>
<p><span class="math display">\[
\mbox{Stress}_D(x_1, ..., x_n) = \left(\sum_{i, j=1; i\neq j}^n (d_{ij} - d_k(i,j))^2\right)^{1/2}
\]</span> where <span class="math inline">\(D\)</span> is an <span class="math inline">\(n\times n\)</span> matrix of distances <span class="math inline">\((d_{ij})\)</span> between all pairs of points, and <span class="math inline">\(d_k(i,j)\)</span> is the distance between the points in the low-dimensional space.</p>
</div><div class="column f60">
<p>PCA is a special case of MDS. The result from PCA is a linear projection, but generally MDS can provide some non-linear transformation.</p>
<p>Many variations being developed:</p>
<ul>
<li><span class="blue2">t-stochastic neighbourhood embedding (t-SNE)</span>: compares interpoint distances with a standard probability distribution (eg <span class="math inline">\(t\)</span>-distribution) to exaggerate local neighbourhood differences.</li>
<li><span class="blue2">uniform manifold approximation and projection (UMAP)</span>: compares the interpoint distances with what might be expected if the data was uniformly distributed in the high-dimensions.</li>
</ul>
<p>NLDR can be useful but it can also make some misleading representations.</p>
</div>
</div>
</section>
<section id="non-linear-dimension-reduction-22" class="slide level2">
<h2>Non-linear dimension reduction <span class="f70">(2/2)</span></h2>
<div class="columns">
<div class="column">
<center>
<span class="f70">UMAP 2D representation</span>
</center>
<div class="cell" data-layout-align="center">
<div class="cell-output-display">
<div class="quarto-figure quarto-figure-center">
<figure>
<p><img data-src="slides1_files/figure-revealjs/penguins-umap-1.png" class="quarto-figure quarto-figure-center" style="width:70.0%"></p>
</figure>
</div>
</div>
</div>
<div class="f70">
<div class="cell" data-layout-align="center">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(uwot)</span>
<span id="cb12-2"><a href="" aria-hidden="true" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">253</span>)</span>
<span id="cb12-3"><a href="" aria-hidden="true" tabindex="-1"></a>p_tidy_umap <span class="ot"><-</span> <span class="fu">umap</span>(p_tidy_std[,<span class="dv">2</span><span class="sc">:</span><span class="dv">5</span>], <span class="at">init =</span> <span class="st">"spca"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</div>
</div><div class="column">
<center>
<p><span class="f70">Tour animation of the same data</span></p>
<img data-src="gifs/penguins1.gif" alt="Grand tour showing the 4D penguins data. Two clusters are easily seen, and a third is plausible." width="500">