-
Notifications
You must be signed in to change notification settings - Fork 12
/
palAmpqk.c
159 lines (138 loc) · 4.59 KB
/
palAmpqk.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*
*+
* Name:
* palAmpqk
* Purpose:
* Convert star RA,Dec from geocentric apparent to mean place.
* Language:
* Starlink ANSI C
* Type of Module:
* Library routine
* Invocation:
* void palAmpqk ( double ra, double da, double amprms[21],
* double *rm, double *dm )
* Arguments:
* ra = double (Given)
* Apparent RA (radians).
* da = double (Given)
* Apparent Dec (radians).
* amprms = double[21] (Given)
* Star-independent mean-to-apparent parameters (see palMappa):
* (0) time interval for proper motion (Julian years)
* (1-3) barycentric position of the Earth (AU)
* (4-6) heliocentric direction of the Earth (unit vector)
* (7) (grav rad Sun)*2/(Sun-Earth distance)
* (8-10) abv: barycentric Earth velocity in units of c
* (11) sqrt(1-v*v) where v=modulus(abv)
* (12-20) precession/nutation (3,3) matrix
* rm = double (Returned)
* Mean RA (radians).
* dm = double (Returned)
* Mean Dec (radians).
* Description:
* Convert star RA,Dec from geocentric apparent to mean place. The "mean"
* coordinate system is in fact close to ICRS. Use of this function
* is appropriate when efficiency is important and where many star
* positions are all to be transformed for one epoch and equinox. The
* star-independent parameters can be obtained by calling the palMappa
* function.
* Note:
* Iterative techniques are used for the aberration and
* light deflection corrections so that the routines
* palAmp (or palAmpqk) and palMap (or palMapqk) are
* accurate inverses; even at the edge of the Sun's disc
* the discrepancy is only about 1 nanoarcsecond.
* Authors:
* PTW: Pat Wallace (STFC)
* TIMJ: Tim Jenness
* {enter_new_authors_here}
* History:
* 2012-02-13 (PTW):
* Initial version.
* Adapted with permission from the Fortran SLALIB library.
* 2016-12-19 (TIMJ):
* Add in light deflection (was missed in the initial port).
* {enter_further_changes_here}
* Copyright:
* Copyright (C) 2000 Rutherford Appleton Laboratory
* Copyright (C) 2012 Science and Technology Facilities Council.
* Copyright (C) 2016 Tim Jenness
* All Rights Reserved.
* Licence:
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either
* version 3 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* License along with this program. If not, see
* <http://www.gnu.org/licenses/>.
* Bugs:
* {note_any_bugs_here}
*-
*/
#include "pal.h"
#include "pal1sofa.h"
void palAmpqk ( double ra, double da, double amprms[21], double *rm,
double *dm ){
/* Local Variables: */
double ab1; /* sqrt(1-v*v) where v=modulus of Earth vel */
double abv[3]; /* Earth velocity wrt SSB (c, FK5) */
double p1[3], p2[3], p3[3]; /* work vectors */
double ab1p1, p1dv, p1dvp1, w;
double gr2e, pde, pdep1, ehn[3], p[3];
int i, j;
/* Unpack some of the parameters */
gr2e = amprms[7];
ab1 = amprms[11];
for( i = 0; i < 3; i++ ) {
ehn[i] = amprms[i + 4];
abv[i] = amprms[i + 8];
}
/* Apparent RA,Dec to Cartesian */
eraS2c( ra, da, p3 );
/* Precession and nutation */
eraTrxp( (double(*)[3]) &rms[12], p3, p2 );
/* Aberration */
ab1p1 = ab1 + 1.0;
for( i = 0; i < 3; i++ ) {
p1[i] = p2[i];
}
for( j = 0; j < 2; j++ ) {
p1dv = eraPdp( p1, abv );
p1dvp1 = 1.0 + p1dv;
w = 1.0 + p1dv / ab1p1;
for( i = 0; i < 3; i++ ) {
p1[i] = ( p1dvp1 * p2[i] - w * abv[i] ) / ab1;
}
eraPn( p1, &w, p3 );
for( i = 0; i < 3; i++ ) {
p1[i] = p3[i];
}
}
/* Light deflection */
for( i = 0; i < 3; i++ ) {
p[i] = p1[i];
}
for( j = 0; j < 5; j++ ) {
pde = eraPdp( p, ehn );
pdep1 = 1.0 + pde;
w = pdep1 - gr2e*pde;
for( i = 0; i < 3; i++ ) {
p[i] = (pdep1*p1[i] - gr2e*ehn[i])/w;
}
eraPn( p, &w, p2 );
for( i = 0; i < 3; i++ ) {
p[i] = p2[i];
}
}
/* Mean RA,Dec */
eraC2s( p, rm, dm );
*rm = eraAnp( *rm );
}