-
Notifications
You must be signed in to change notification settings - Fork 143
/
gradio_app.py
420 lines (359 loc) · 12.5 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import os
import tempfile
import time
from contextlib import nullcontext
from functools import lru_cache
from typing import Any
import gradio as gr
import numpy as np
import rembg
import torch
from gradio_litmodel3d import LitModel3D
from PIL import Image
import sf3d.utils as sf3d_utils
from sf3d.system import SF3D
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")
rembg_session = rembg.new_session()
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 1.6
COND_FOVY_DEG = 40
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
)
generated_files = []
# Delete previous gradio temp dir folder
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
import shutil
shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])
device = sf3d_utils.get_device()
model = SF3D.from_pretrained(
"stabilityai/stable-fast-3d",
config_name="config.yaml",
weight_name="model.safetensors",
)
model.eval()
model = model.to(device)
example_files = [
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]
def run_model(input_image, remesh_option, vertex_count, texture_size):
start = time.time()
with torch.no_grad():
with torch.autocast(
device_type=device, dtype=torch.float16
) if "cuda" in device else nullcontext():
model_batch = create_batch(input_image)
model_batch = {k: v.to(device) for k, v in model_batch.items()}
trimesh_mesh, _glob_dict = model.generate_mesh(
model_batch, texture_size, remesh_option, vertex_count
)
trimesh_mesh = trimesh_mesh[0]
# Create new tmp file
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
generated_files.append(tmp_file.name)
print("Generation took:", time.time() - start, "s")
return tmp_file.name
def create_batch(input_image: Image) -> dict[str, Any]:
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Add batch dim
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
return batched
@lru_cache
def checkerboard(squares: int, size: int, min_value: float = 0.5):
base = np.zeros((squares, squares)) + min_value
base[1::2, ::2] = 1
base[::2, 1::2] = 1
repeat_mult = size // squares
return (
base.repeat(repeat_mult, axis=0)
.repeat(repeat_mult, axis=1)[:, :, None]
.repeat(3, axis=-1)
)
def remove_background(input_image: Image) -> Image:
return rembg.remove(input_image, session=rembg_session)
def resize_foreground(
image: Image,
ratio: float,
) -> Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image, mode="RGBA").resize(
(COND_WIDTH, COND_HEIGHT)
)
return new_image
def square_crop(input_image: Image) -> Image:
# Perform a center square crop
min_size = min(input_image.size)
left = (input_image.size[0] - min_size) // 2
top = (input_image.size[1] - min_size) // 2
right = (input_image.size[0] + min_size) // 2
bottom = (input_image.size[1] + min_size) // 2
return input_image.crop((left, top, right, bottom)).resize(
(COND_WIDTH, COND_HEIGHT)
)
def show_mask_img(input_image: Image) -> Image:
img_numpy = np.array(input_image)
alpha = img_numpy[:, :, 3] / 255.0
chkb = checkerboard(32, 512) * 255
new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
return Image.fromarray(new_img.astype(np.uint8), mode="RGB")
def run_button(
run_btn,
input_image,
background_state,
foreground_ratio,
remesh_option,
vertex_count,
texture_size,
):
if run_btn == "Run":
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
glb_file: str = run_model(
background_state, remesh_option.lower(), vertex_count, texture_size
)
if torch.cuda.is_available():
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
elif torch.backends.mps.is_available():
print(
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
)
return (
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(value=glb_file, visible=True),
gr.update(visible=True),
)
elif run_btn == "Remove Background":
rem_removed = remove_background(input_image)
sqr_crop = square_crop(rem_removed)
fr_res = resize_foreground(sqr_crop, foreground_ratio)
return (
gr.update(value="Run", visible=True),
sqr_crop,
fr_res,
gr.update(value=show_mask_img(fr_res), visible=True),
gr.update(value=None, visible=False),
gr.update(visible=False),
)
def requires_bg_remove(image, fr):
if image is None:
return (
gr.update(visible=False, value="Run"),
None,
None,
gr.update(value=None, visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
alpha_channel = np.array(image.getchannel("A"))
min_alpha = alpha_channel.min()
if min_alpha == 0:
print("Already has alpha")
sqr_crop = square_crop(image)
fr_res = resize_foreground(sqr_crop, fr)
return (
gr.update(value="Run", visible=True),
sqr_crop,
fr_res,
gr.update(value=show_mask_img(fr_res), visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
return (
gr.update(value="Remove Background", visible=True),
None,
None,
gr.update(value=None, visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
def update_foreground_ratio(img_proc, fr):
foreground_res = resize_foreground(img_proc, fr)
return (
foreground_res,
gr.update(value=show_mask_img(foreground_res)),
)
with gr.Blocks() as demo:
img_proc_state = gr.State()
background_remove_state = gr.State()
gr.Markdown("""
# SF3D: Stable Fast 3D Mesh Reconstruction with UV-unwrapping and Illumination Disentanglement
**SF3D** is a state-of-the-art method for 3D mesh reconstruction from a single image.
This demo allows you to upload an image and generate a 3D mesh model from it.
**Tips**
1. If the image already has an alpha channel, you can skip the background removal step.
2. You can adjust the foreground ratio to control the size of the foreground object. This can influence the shape
3. You can select the remeshing option to control the mesh topology. This can introduce artifacts in the mesh on thin surfaces and should be turned off in such cases.
4. You can upload your own HDR environment map to light the 3D model.
""")
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_img = gr.Image(
type="pil", label="Input Image", sources="upload", image_mode="RGBA"
)
preview_removal = gr.Image(
label="Preview Background Removal",
type="pil",
image_mode="RGB",
interactive=False,
visible=False,
)
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05,
)
foreground_ratio.change(
update_foreground_ratio,
inputs=[img_proc_state, foreground_ratio],
outputs=[background_remove_state, preview_removal],
)
remesh_option = gr.Radio(
choices=["None", "Triangle", "Quad"],
label="Remeshing",
value="None",
visible=True,
)
vertex_count_slider = gr.Slider(
label="Target Vertex Count",
minimum=-1,
maximum=20000,
value=-1,
visible=True,
)
texture_size = gr.Slider(
label="Texture Size",
minimum=512,
maximum=2048,
value=1024,
step=256,
visible=True,
)
run_btn = gr.Button("Run", variant="primary", visible=False)
with gr.Column():
output_3d = LitModel3D(
label="3D Model",
visible=False,
clear_color=[0.0, 0.0, 0.0, 0.0],
tonemapping="aces",
contrast=1.0,
scale=1.0,
)
with gr.Column(visible=False, scale=1.0) as hdr_row:
gr.Markdown("""## HDR Environment Map
Select an HDR environment map to light the 3D model. You can also upload your own HDR environment maps.
""")
with gr.Row():
hdr_illumination_file = gr.File(
label="HDR Env Map", file_types=[".hdr"], file_count="single"
)
example_hdris = [
os.path.join("demo_files/hdri", f)
for f in os.listdir("demo_files/hdri")
]
hdr_illumination_example = gr.Examples(
examples=example_hdris,
inputs=hdr_illumination_file,
)
hdr_illumination_file.change(
lambda x: gr.update(env_map=x.name if x is not None else None),
inputs=hdr_illumination_file,
outputs=[output_3d],
)
examples = gr.Examples(
examples=example_files,
inputs=input_img,
)
input_img.change(
requires_bg_remove,
inputs=[input_img, foreground_ratio],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
],
)
run_btn.click(
run_button,
inputs=[
run_btn,
input_img,
background_remove_state,
foreground_ratio,
remesh_option,
vertex_count_slider,
texture_size,
],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
],
)
demo.queue().launch(share=False)