diff --git a/Prediction Models/sleep_disorder_predictor/data/dataset.csv b/Prediction Models/sleep_disorder_predictor/data/dataset.csv
new file mode 100644
index 00000000..b7e16bd5
--- /dev/null
+++ b/Prediction Models/sleep_disorder_predictor/data/dataset.csv
@@ -0,0 +1,375 @@
+Person ID,Gender,Age,Occupation,Sleep Duration,Quality of Sleep,Physical Activity Level,Stress Level,BMI Category,Blood Pressure,Heart Rate,Daily Steps,Sleep Disorder
+1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126/83,77,4200,None
+2,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
+3,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
+4,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
+5,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
+6,Male,28,Software Engineer,5.9,4,30,8,Obese,140/90,85,3000,Insomnia
+7,Male,29,Teacher,6.3,6,40,7,Obese,140/90,82,3500,Insomnia
+8,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+9,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+10,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+11,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
+12,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+13,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
+14,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
+15,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
+16,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
+17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Sleep Apnea
+18,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,Sleep Apnea
+19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Insomnia
+20,Male,30,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
+21,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+22,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+23,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+24,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+25,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+26,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
+27,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+28,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
+29,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
+30,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
+31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Sleep Apnea
+32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Insomnia
+33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117/76,69,6800,None
+34,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
+35,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+36,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
+37,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
+38,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
+39,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
+40,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
+41,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+42,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+43,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+44,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+45,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+46,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+47,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+48,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
+49,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+50,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,Sleep Apnea
+51,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
+52,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
+53,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+54,Male,32,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
+55,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+56,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+57,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+58,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+59,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+60,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
+61,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+62,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+63,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
+64,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
+65,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
+66,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
+67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118/76,68,7000,None
+68,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,Insomnia
+69,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
+70,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
+71,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
+72,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
+73,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
+74,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
+75,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+76,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+77,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+78,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+79,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+80,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
+81,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
+82,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
+83,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
+84,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
+85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
+86,Female,35,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+87,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
+88,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
+89,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
+90,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
+91,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
+92,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
+93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
+94,Male,35,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
+95,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,Insomnia
+96,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+97,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+98,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+99,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
+100,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
+101,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
+102,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
+103,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
+104,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Sleep Apnea
+105,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,Sleep Apnea
+106,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Insomnia
+107,Female,37,Nurse,6.1,6,42,6,Overweight,126/83,77,4200,None
+108,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
+109,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
+110,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
+111,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+112,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
+113,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+114,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
+115,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+116,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+117,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+118,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+119,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+120,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+121,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+122,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+123,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+124,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+125,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
+126,Female,37,Nurse,7.5,8,60,4,Normal Weight,120/80,70,8000,None
+127,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
+128,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+129,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
+130,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
+131,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+132,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
+133,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
+134,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+135,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
+136,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
+137,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+138,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
+139,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+140,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
+141,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+142,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
+143,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+144,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
+145,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,Sleep Apnea
+146,Female,38,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
+147,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,Insomnia
+148,Male,39,Engineer,6.5,5,40,7,Overweight,132/87,80,4000,Insomnia
+149,Female,39,Lawyer,6.9,7,50,6,Normal Weight,128/85,75,5500,None
+150,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
+151,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
+152,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+153,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+154,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+155,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+156,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+157,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+158,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+159,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+160,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+161,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
+162,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
+163,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
+164,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
+165,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
+166,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,Insomnia
+167,Male,41,Engineer,7.3,8,70,6,Normal Weight,121/79,72,6200,None
+168,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
+169,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
+170,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
+171,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
+172,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
+173,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
+174,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
+175,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
+176,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
+177,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
+178,Male,42,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+179,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
+180,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
+181,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
+182,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
+183,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
+184,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
+185,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
+186,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
+187,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
+188,Male,43,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+189,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
+190,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+191,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
+192,Male,43,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
+193,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+194,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+195,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+196,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+197,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+198,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+199,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+200,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+201,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
+202,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
+203,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
+204,Male,43,Engineer,6.9,6,47,7,Normal Weight,117/76,69,6800,None
+205,Male,43,Engineer,7.6,8,75,4,Overweight,122/80,68,6800,None
+206,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
+207,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
+208,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
+209,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
+210,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
+211,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
+212,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
+213,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
+214,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
+215,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
+216,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
+217,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
+218,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
+219,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Sleep Apnea
+220,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Sleep Apnea
+221,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+222,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
+223,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+224,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
+225,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+226,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+227,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+228,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+229,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+230,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+231,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+232,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+233,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+234,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+235,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+236,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+237,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
+238,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
+239,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+240,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
+241,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
+242,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+243,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
+244,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
+245,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+246,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
+247,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
+248,Male,44,Engineer,6.8,7,45,7,Overweight,130/85,78,5000,Insomnia
+249,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,None
+250,Male,44,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,None
+251,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
+252,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
+253,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
+254,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
+255,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
+256,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
+257,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+258,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+259,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+260,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+261,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
+262,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
+263,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
+264,Female,45,Manager,6.9,7,55,5,Overweight,125/82,75,5500,None
+265,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
+266,Female,48,Nurse,5.9,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+267,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
+268,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,None
+269,Female,49,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+270,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+271,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+272,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+273,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+274,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+275,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+276,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+277,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
+278,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
+279,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Insomnia
+280,Female,50,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
+281,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,None
+282,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+283,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+284,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+285,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+286,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+287,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+288,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+289,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+290,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+291,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+292,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+293,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+294,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+295,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+296,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+297,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+298,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+299,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+300,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+301,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+302,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+303,Female,51,Nurse,7.1,7,55,6,Normal Weight,125/82,72,6000,None
+304,Female,51,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+305,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+306,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
+307,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
+308,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
+309,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
+310,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
+311,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
+312,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
+313,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+314,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+315,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+316,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,Insomnia
+317,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+318,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+319,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+320,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+321,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+322,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+323,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+324,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+325,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
+326,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+327,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
+328,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+329,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
+330,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+331,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+332,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+333,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+334,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+335,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+336,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+337,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+338,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
+339,Female,54,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
+340,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
+341,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
+342,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
+343,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
+344,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
+345,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+346,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+347,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+348,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+349,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+350,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+351,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+352,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+353,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+354,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+355,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+356,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+357,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+358,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+359,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,None
+360,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
+361,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+362,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+363,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+364,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+365,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+366,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+367,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+368,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+369,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+370,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+371,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+372,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+373,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
+374,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
\ No newline at end of file
diff --git a/Prediction Models/sleep_disorder_predictor/model.py b/Prediction Models/sleep_disorder_predictor/model.py
new file mode 100644
index 00000000..561526c0
--- /dev/null
+++ b/Prediction Models/sleep_disorder_predictor/model.py
@@ -0,0 +1,43 @@
+import streamlit as st
+import pickle
+import pandas as pd # Import pandas to handle DataFrames
+import numpy as np
+import warnings
+warnings.filterwarnings("ignore")
+
+# Load the model and the scaler
+model_path = 'Prediction Models/sleep_disorder_predictor/saved_models/Model_Prediction.sav'
+preprocessor_path = 'Prediction Models/sleep_disorder_predictor/saved_models/preprocessor.sav'
+
+# Load the pre-trained model and scaler using pickle
+loaded_model = pickle.load(open(model_path, 'rb'))
+preprocessor = pickle.load(open(preprocessor_path, 'rb'))
+
+# Define the prediction function
+def disease_get_prediction(Age, Sleep_Duration,
+ Heart_Rate, Daily_Steps,
+ Systolic, Diastolic, Occupation, Quality_of_Sleep, Gender,
+ Physical_Activity_Level, Stress_Level, BMI_Category):
+ # Create a DataFrame with the features using correct column names
+ features = pd.DataFrame({
+ 'Age': [int(Age)],
+ 'Sleep Duration': [float(Sleep_Duration)], # Changed to match expected name
+ 'Heart Rate': [int(Heart_Rate)], # Changed to match expected name
+ 'Daily Steps': [int(Daily_Steps)], # Changed to match expected name
+ 'Systolic': [float(Systolic)],
+ 'Diastolic': [float(Diastolic)],
+ 'Occupation': [Occupation],
+ 'Quality of Sleep': [int(Quality_of_Sleep)], # Changed to match expected name
+ 'Gender': [Gender],
+ 'Physical Activity Level': [int(Physical_Activity_Level)], # Changed to match expected name
+ 'Stress Level': [int(Stress_Level)], # Changed to match expected name
+ 'BMI Category': [BMI_Category] # Changed to match expected name
+ })
+
+ # Apply the preprocessor (make sure it expects a DataFrame)
+ preprocessed_data = preprocessor.transform(features)
+
+ # Make prediction
+ prediction = loaded_model.predict(preprocessed_data)
+
+ return prediction
diff --git a/Prediction Models/sleep_disorder_predictor/notebooks/sleep-disorder.ipynb b/Prediction Models/sleep_disorder_predictor/notebooks/sleep-disorder.ipynb
new file mode 100644
index 00000000..9fdd3203
--- /dev/null
+++ b/Prediction Models/sleep_disorder_predictor/notebooks/sleep-disorder.ipynb
@@ -0,0 +1,1817 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Importing Libraries"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.730222Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.729761Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.736092Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.734920Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.730179Z"
+ },
+ "trusted": true
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import plotly.express as px\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.761933Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.761339Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.769291Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.767888Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.761886Z"
+ },
+ "trusted": true
+ },
+ "outputs": [],
+ "source": [
+ "from sklearn.preprocessing import OneHotEncoder,LabelEncoder ,RobustScaler,StandardScaler\n",
+ "from sklearn.compose import ColumnTransformer\n",
+ "from sklearn.pipeline import Pipeline\n",
+ "from sklearn.model_selection import train_test_split,StratifiedShuffleSplit,StratifiedKFold,cross_val_score\n",
+ "from imblearn.over_sampling import SMOTE\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report, confusion_matrix\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "import xgboost as xgb\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Reading CSV data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.798928Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.798473Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.809300Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.808250Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.798887Z"
+ },
+ "trusted": true
+ },
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('Prediction Models/sleep_disorder_predictor/data/dataset.csv')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# EDA"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.842641Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.842174Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.861483Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.860244Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.842596Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Person ID | \n",
+ " Gender | \n",
+ " Age | \n",
+ " Occupation | \n",
+ " Sleep Duration | \n",
+ " Quality of Sleep | \n",
+ " Physical Activity Level | \n",
+ " Stress Level | \n",
+ " BMI Category | \n",
+ " Blood Pressure | \n",
+ " Heart Rate | \n",
+ " Daily Steps | \n",
+ " Sleep Disorder | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " Male | \n",
+ " 27 | \n",
+ " Software Engineer | \n",
+ " 6.1 | \n",
+ " 6 | \n",
+ " 42 | \n",
+ " 6 | \n",
+ " Overweight | \n",
+ " 126/83 | \n",
+ " 77 | \n",
+ " 4200 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " Male | \n",
+ " 28 | \n",
+ " Doctor | \n",
+ " 6.2 | \n",
+ " 6 | \n",
+ " 60 | \n",
+ " 8 | \n",
+ " Normal | \n",
+ " 125/80 | \n",
+ " 75 | \n",
+ " 10000 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " Male | \n",
+ " 28 | \n",
+ " Doctor | \n",
+ " 6.2 | \n",
+ " 6 | \n",
+ " 60 | \n",
+ " 8 | \n",
+ " Normal | \n",
+ " 125/80 | \n",
+ " 75 | \n",
+ " 10000 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " Male | \n",
+ " 28 | \n",
+ " Sales Representative | \n",
+ " 5.9 | \n",
+ " 4 | \n",
+ " 30 | \n",
+ " 8 | \n",
+ " Obese | \n",
+ " 140/90 | \n",
+ " 85 | \n",
+ " 3000 | \n",
+ " Sleep Apnea | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " Male | \n",
+ " 28 | \n",
+ " Sales Representative | \n",
+ " 5.9 | \n",
+ " 4 | \n",
+ " 30 | \n",
+ " 8 | \n",
+ " Obese | \n",
+ " 140/90 | \n",
+ " 85 | \n",
+ " 3000 | \n",
+ " Sleep Apnea | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Person ID Gender Age Occupation Sleep Duration \\\n",
+ "0 1 Male 27 Software Engineer 6.1 \n",
+ "1 2 Male 28 Doctor 6.2 \n",
+ "2 3 Male 28 Doctor 6.2 \n",
+ "3 4 Male 28 Sales Representative 5.9 \n",
+ "4 5 Male 28 Sales Representative 5.9 \n",
+ "\n",
+ " Quality of Sleep Physical Activity Level Stress Level BMI Category \\\n",
+ "0 6 42 6 Overweight \n",
+ "1 6 60 8 Normal \n",
+ "2 6 60 8 Normal \n",
+ "3 4 30 8 Obese \n",
+ "4 4 30 8 Obese \n",
+ "\n",
+ " Blood Pressure Heart Rate Daily Steps Sleep Disorder \n",
+ "0 126/83 77 4200 NaN \n",
+ "1 125/80 75 10000 NaN \n",
+ "2 125/80 75 10000 NaN \n",
+ "3 140/90 85 3000 Sleep Apnea \n",
+ "4 140/90 85 3000 Sleep Apnea "
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.871919Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.871378Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.880137Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.878890Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.871865Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(374, 13)"
+ ]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.901136Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.900697Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.910144Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.908782Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.901095Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Person ID int64\n",
+ "Gender object\n",
+ "Age int64\n",
+ "Occupation object\n",
+ "Sleep Duration float64\n",
+ "Quality of Sleep int64\n",
+ "Physical Activity Level int64\n",
+ "Stress Level int64\n",
+ "BMI Category object\n",
+ "Blood Pressure object\n",
+ "Heart Rate int64\n",
+ "Daily Steps int64\n",
+ "Sleep Disorder object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.931656Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.931147Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.969450Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.968289Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.931608Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Person ID | \n",
+ " Age | \n",
+ " Sleep Duration | \n",
+ " Quality of Sleep | \n",
+ " Physical Activity Level | \n",
+ " Stress Level | \n",
+ " Heart Rate | \n",
+ " Daily Steps | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 374.000000 | \n",
+ " 374.000000 | \n",
+ " 374.000000 | \n",
+ " 374.000000 | \n",
+ " 374.000000 | \n",
+ " 374.000000 | \n",
+ " 374.000000 | \n",
+ " 374.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 187.500000 | \n",
+ " 42.184492 | \n",
+ " 7.132086 | \n",
+ " 7.312834 | \n",
+ " 59.171123 | \n",
+ " 5.385027 | \n",
+ " 70.165775 | \n",
+ " 6816.844920 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 108.108742 | \n",
+ " 8.673133 | \n",
+ " 0.795657 | \n",
+ " 1.196956 | \n",
+ " 20.830804 | \n",
+ " 1.774526 | \n",
+ " 4.135676 | \n",
+ " 1617.915679 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 1.000000 | \n",
+ " 27.000000 | \n",
+ " 5.800000 | \n",
+ " 4.000000 | \n",
+ " 30.000000 | \n",
+ " 3.000000 | \n",
+ " 65.000000 | \n",
+ " 3000.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 94.250000 | \n",
+ " 35.250000 | \n",
+ " 6.400000 | \n",
+ " 6.000000 | \n",
+ " 45.000000 | \n",
+ " 4.000000 | \n",
+ " 68.000000 | \n",
+ " 5600.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 187.500000 | \n",
+ " 43.000000 | \n",
+ " 7.200000 | \n",
+ " 7.000000 | \n",
+ " 60.000000 | \n",
+ " 5.000000 | \n",
+ " 70.000000 | \n",
+ " 7000.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 280.750000 | \n",
+ " 50.000000 | \n",
+ " 7.800000 | \n",
+ " 8.000000 | \n",
+ " 75.000000 | \n",
+ " 7.000000 | \n",
+ " 72.000000 | \n",
+ " 8000.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 374.000000 | \n",
+ " 59.000000 | \n",
+ " 8.500000 | \n",
+ " 9.000000 | \n",
+ " 90.000000 | \n",
+ " 8.000000 | \n",
+ " 86.000000 | \n",
+ " 10000.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Person ID Age Sleep Duration Quality of Sleep \\\n",
+ "count 374.000000 374.000000 374.000000 374.000000 \n",
+ "mean 187.500000 42.184492 7.132086 7.312834 \n",
+ "std 108.108742 8.673133 0.795657 1.196956 \n",
+ "min 1.000000 27.000000 5.800000 4.000000 \n",
+ "25% 94.250000 35.250000 6.400000 6.000000 \n",
+ "50% 187.500000 43.000000 7.200000 7.000000 \n",
+ "75% 280.750000 50.000000 7.800000 8.000000 \n",
+ "max 374.000000 59.000000 8.500000 9.000000 \n",
+ "\n",
+ " Physical Activity Level Stress Level Heart Rate Daily Steps \n",
+ "count 374.000000 374.000000 374.000000 374.000000 \n",
+ "mean 59.171123 5.385027 70.165775 6816.844920 \n",
+ "std 20.830804 1.774526 4.135676 1617.915679 \n",
+ "min 30.000000 3.000000 65.000000 3000.000000 \n",
+ "25% 45.000000 4.000000 68.000000 5600.000000 \n",
+ "50% 60.000000 5.000000 70.000000 7000.000000 \n",
+ "75% 75.000000 7.000000 72.000000 8000.000000 \n",
+ "max 90.000000 8.000000 86.000000 10000.000000 "
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.971646Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.971245Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.977082Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.976038Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.971606Z"
+ },
+ "trusted": true
+ },
+ "outputs": [],
+ "source": [
+ "columns = [column for column in df.columns if column!='Person ID']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:50.988901Z",
+ "iopub.status.busy": "2024-10-28T17:03:50.988033Z",
+ "iopub.status.idle": "2024-10-28T17:03:50.999577Z",
+ "shell.execute_reply": "2024-10-28T17:03:50.998370Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:50.988856Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Unique values in 'Gender': ['Male' 'Female']\n",
+ "Unique values in 'Age': [27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 48 49 50 51 52\n",
+ " 53 54 55 56 57 58 59]\n",
+ "Unique values in 'Occupation': ['Software Engineer' 'Doctor' 'Sales Representative' 'Teacher' 'Nurse'\n",
+ " 'Engineer' 'Accountant' 'Scientist' 'Lawyer' 'Salesperson' 'Manager']\n",
+ "Unique values in 'Sleep Duration': [6.1 6.2 5.9 6.3 7.8 6. 6.5 7.6 7.7 7.9 6.4 7.5 7.2 5.8 6.7 7.3 7.4 7.1\n",
+ " 6.6 6.9 8. 6.8 8.1 8.3 8.5 8.4 8.2]\n",
+ "Unique values in 'Quality of Sleep': [6 4 7 5 8 9]\n",
+ "Unique values in 'Physical Activity Level': [42 60 30 40 75 35 45 50 32 70 80 55 90 47 65 85]\n",
+ "Unique values in 'Stress Level': [6 8 7 4 3 5]\n",
+ "Unique values in 'BMI Category': ['Overweight' 'Normal' 'Obese' 'Normal Weight']\n",
+ "Unique values in 'Blood Pressure': ['126/83' '125/80' '140/90' '120/80' '132/87' '130/86' '117/76' '118/76'\n",
+ " '128/85' '131/86' '128/84' '115/75' '135/88' '129/84' '130/85' '115/78'\n",
+ " '119/77' '121/79' '125/82' '135/90' '122/80' '142/92' '140/95' '139/91'\n",
+ " '118/75']\n",
+ "Unique values in 'Heart Rate': [77 75 85 82 70 80 78 69 72 68 76 81 65 84 74 67 73 83 86]\n",
+ "Unique values in 'Daily Steps': [ 4200 10000 3000 3500 8000 4000 4100 6800 5000 7000 5500 5200\n",
+ " 5600 3300 4800 7500 7300 6200 6000 3700]\n",
+ "Unique values in 'Sleep Disorder': [nan 'Sleep Apnea' 'Insomnia']\n"
+ ]
+ }
+ ],
+ "source": [
+ "for column in columns:\n",
+ " unique_values = df[column].unique()\n",
+ " print(f\"Unique values in '{column}': {unique_values}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:51.014238Z",
+ "iopub.status.busy": "2024-10-28T17:03:51.013501Z",
+ "iopub.status.idle": "2024-10-28T17:03:51.020264Z",
+ "shell.execute_reply": "2024-10-28T17:03:51.018894Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:51.014189Z"
+ },
+ "trusted": true
+ },
+ "outputs": [],
+ "source": [
+ "# Replace NaN in 'Sleep Disorder' with 'No Disorder'\n",
+ "df['Sleep Disorder'].fillna('No Disorder', inplace=True)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:51.055209Z",
+ "iopub.status.busy": "2024-10-28T17:03:51.054779Z",
+ "iopub.status.idle": "2024-10-28T17:03:51.063757Z",
+ "shell.execute_reply": "2024-10-28T17:03:51.062519Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:51.055170Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Value counts of 'Sleep Disorder':\n",
+ "Sleep Disorder\n",
+ "No Disorder 219\n",
+ "Sleep Apnea 78\n",
+ "Insomnia 77\n",
+ "Name: count, dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Value counts of 'Sleep Disorder'\n",
+ "sleep_disorder_counts = df['Sleep Disorder'].value_counts()\n",
+ "\n",
+ "print(\"Value counts of 'Sleep Disorder':\")\n",
+ "print(sleep_disorder_counts)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:51.120940Z",
+ "iopub.status.busy": "2024-10-28T17:03:51.120476Z",
+ "iopub.status.idle": "2024-10-28T17:03:51.132310Z",
+ "shell.execute_reply": "2024-10-28T17:03:51.131078Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:51.120895Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "BMI Category\n",
+ "Normal Weight 216\n",
+ "Overweight 148\n",
+ "Obese 10\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['BMI Category']=df['BMI Category'].replace({'Normal':'Normal Weight'})\n",
+ "df['BMI Category'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:51.231739Z",
+ "iopub.status.busy": "2024-10-28T17:03:51.230626Z",
+ "iopub.status.idle": "2024-10-28T17:03:51.322202Z",
+ "shell.execute_reply": "2024-10-28T17:03:51.321069Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:51.231674Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# bmi_counts = df['BMI Category'].value_counts()\n",
+ "fig = px.histogram(data_frame=df, x = 'BMI Category', color = 'Sleep Disorder', title='Bar Chart of BMI Category Counts')\n",
+ "fig.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- Obese suffer from Insomnia and Sleep Apnea\n",
+ "- Very few overweighted people have no sleep disorder\n",
+ "- Very few people of normal weight face sleep disorder "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:51.324785Z",
+ "iopub.status.busy": "2024-10-28T17:03:51.324343Z",
+ "iopub.status.idle": "2024-10-28T17:03:51.411588Z",
+ "shell.execute_reply": "2024-10-28T17:03:51.410375Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:51.324744Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = px.histogram(data_frame=df, x = 'Quality of Sleep', color = 'Sleep Disorder', title='Bar Chart of BMI Category Counts')\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:51.419009Z",
+ "iopub.status.busy": "2024-10-28T17:03:51.418278Z",
+ "iopub.status.idle": "2024-10-28T17:03:51.507486Z",
+ "shell.execute_reply": "2024-10-28T17:03:51.506316Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:51.418965Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig = px.histogram(data_frame=df, x = 'Occupation', color = 'Sleep Disorder', title='Bar Chart of BMI Category Counts')\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Occupation of Nurse,Teacher, Sales person and sales representative are prone to sleep disorder"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-10-28T17:03:51.609353Z",
+ "iopub.status.busy": "2024-10-28T17:03:51.608854Z",
+ "iopub.status.idle": "2024-10-28T17:03:51.934707Z",
+ "shell.execute_reply": "2024-10-28T17:03:51.933435Z",
+ "shell.execute_reply.started": "2024-10-28T17:03:51.609305Z"
+ },
+ "trusted": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAIpCAYAAAB+EdPUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADG+ElEQVR4nOzddXhUd/r38feZTJKJTdwTEiIQJAJBimspUKFChQrQ0tXqVtae3V93t7vbbbtbl91tt0LdqeIugSAhweMQ4u46c54/kpkSSCAJgRO5X9eV64I5I/ckZ86cz/maoqqqihBCCCGEEEKIDum0LkAIIYQQQggh+jIJTUIIIYQQQghxHhKahBBCCCGEEOI8JDQJIYQQQgghxHlIaBJCCCGEEEKI85DQJIQQQgghhBDnIaFJCCGEEEIIIc5DQpMQQgghhBBCnIeEJiGEEEIIIYQ4DwlNQlxioaGhKIpi/dHpdLi4uBAUFMSsWbN47LHHSExMPO9zzJw5E0VR2LJly+Up+gIs7yk7O7vd7X2tToDly5ejKArvvPOO1qVcEt9++y3Tpk3DaDRa97Hu/P5VVeWTTz7hxhtvJDg4GIPBgLu7O3Fxcfz617/m1KlTl674bursb/nOO++gKArLly/XpK7ekpuby1133UVAQAB6vb5b76mxsZGXXnqJ6dOn4+Hhga2tLV5eXowYMYJbbrmFF198keLi4naPGSi/t470xWNRfX09r7/+Otdeey3BwcE4Ojri4OBAUFAQV111Ff/4xz/IzMzUuswL2rJlC4qiMHPmTK1LEeKy0mtdgBCDxZQpU4iIiABavzxLSkpISkpiy5Yt/Otf/2LGjBm89dZbhIWFXbIaQkNDOXnyJFlZWYSGhl6y17lc3nnnHe6++26WLVs2YEPR+Rw8eJCbbroJs9nM7Nmz8ff3R1EU/Pz8uvT4vLw8brjhBhITE1EUhfj4eKZMmUJdXR0JCQk8++yzvPTSS/zrX//ivvvuu8TvpvdlZ2czdOhQQkJCzgn4fY2qqtx4440kJiYycuRIZs2aha2tLVOnTr3gYwsLC7nyyis5dOgQNjY2TJgwgeDgYMxmM6mpqXzxxRd89tlnhIeHc80111yGdyPOtn79eu666y4KCwvR6XTExcUxYcIE7OzsKCgoYOfOnaxbt44//OEPPPPMMzzyyCNalyyEOIuEJiEuk3vvvfecK7qqqrJ69Woefvhhtm7dyuTJk0lISGDo0KHt7rdy5Urq6uoYMmTIZay4cxs3bqS5uZnAwECtS7mgp556it/+9rf4+/trXUqvW7VqFc3Nzfz+97/nb3/7W7ceW15ezrRp08jMzGTMmDG89957jBo1yrq9paWFF198kd/85jfcf//9mEwmHnzwwd5+C73ihhtu4IorrsDV1VXrUnrs5MmTJCYmMmTIEJKTk9Hru/71fP/993Po0CFGjRrF999/T0hISLvtRUVFfPTRR/j6+vZ22aILvvvuO66//npMJhN33303f/3rXwkICGh3n+bmZr755hv+/ve/k5qaqlGlQojzkdAkhIYURWHhwoVMnjyZCRMmkJaWxr333svGjRvb3a+vhCWL8PBwrUvoMn9//wEZmABr17nIyMhuP/b+++8nMzOToUOHsmnTJtzc3Npt1+v1PProoxgMBu6//34ee+wx5s2bR1RUVG+U3qtcXV37dWCCH/+WQ4cO7VZgamho4OuvvwbgueeeOycwAfj4+PDQQw/1TqGiW0pLS7nzzjsxmUz86le/4rnnnuvwfra2ttx0001cf/31HDx48PIWKYToEhnTJEQf4ObmxgsvvADApk2b2L9/f7vtnfXPb2xs5NlnnyU+Ph4XFxfs7Ozw8/Nj/Pjx/PrXv6asrAz4cezCyZMngdYTszPHWVme98y+6nV1dfzf//0fI0aMwNHRsV13vs7GNJ1p69atzJs3Dw8PDxwdHZkwYQLvvfdeh/e90PiDP/3pTyiKwp/+9Kd2Ndx9990AvPvuu+3ez5l97S80punjjz9mzpw5eHh4YG9vT0hICPfcc0+nV3vPfO+bN29m3rx5uLu74+DgwNixY1m5cmWnv5PzaWlp4d///jeTJ0/G1dUVg8FAZGQkDz74ILm5uR3+Pt5++20A7r777g7fe2cyMzP5+OOPAfjnP/95TmA60y9/+UtiY2Npbm7m2WefbbftQr/bzsbMNDc38/7773PHHXcQFRWF0WjEwcGB4cOH8+CDD5KXl3fB93Ch11m+fLm1xfbkyZPt9g9FUQBYtmwZiqLw1FNPdfrcn376KYqiMGHChG7VlJiYyC233EJAQAB2dnb4+Phw7bXXsn79+nb3y87ORlEUZsyYAbR+bs6s80LdCsvKymhubgZaw1FvysvL45FHHrEeA1xcXBg/fjyvvPIKLS0tnT5u48aN3Hjjjfj7+1vf+w033EBCQkKH9z/zb/LGG28QHx+Pk5MTbm5uLFy4kN27d1/U++jqsWjGjBkoisJHH33U6XM988wzKIrCLbfc0qXXfvnll6msrMTPz49//OMfF7y/jY0N8fHxHW4rLy/niSeeIC4uDhcXFxwdHYmOjuavf/0rdXV159z/zONmcXEx9913H8HBwdjZ2REcHMwDDzxARUVFp7WsXLmS8ePH4+joiIeHB/Pnz2f79u0XfA/d3W/OPI4cPnyYW2+9FX9/f2xsbNod84XQmoQmIfqIBQsW4OHhAXDOiVVHzGYzV199Nb/+9a9JT09n2rRpLF68mOjoaIqLi3n22WetV68jIiJYtmwZTk5OANx0000sW7bM+nP2GJiGhgZmzpzJc889x9ChQ7nuuuu61Zrx1VdfMXv2bHJzc7nqqqsYP348+/fvZ+nSpTz66KNdfp7zWbx4MVOmTAFaW77OfD/z58+/4ONVVWXZsmUsWbKEbdu2MWbMGG688UYMBgNvv/02Y8aMYc2aNZ0+/q233mLOnDmUlZUxf/584uLiSEpKYtmyZdYA3FWNjY0sWLCAX/ziFyQlJTFlyhSuv/56Ghsbefnll4mLi+PAgQPW+8fFxbFs2TJri9+UKVO69d6//fZbzGYzbm5uXHfddee9r6Io3HXXXQB88803qKrarffWkcLCQu666y6+//573N3dmT9/PrNnz6ampsb6ftPT0y/qNaZOncpNN90EgJOTU7v9Y9myZQDW1pd///vfmEymDp/n1VdfBVpb5rrqjTfeYNKkSXz22Wf4+fmxePFiIiMj+e6775g3bx5//vOfrfd1dnZm2bJlXHXVVQD4+vq2q9PZ2fm8r+Xl5YWjoyPQeoJuNpu7XOf5bNu2jdGjR/P888/T0NDAlVdeyZQpU8jIyOCBBx7g6quvtoa1Mz322GPMnTuXr7/+miFDhnD99dcTFhbG119/zbRp06xBvyOPPPIIP/vZz3B0dGTRokUEBwezevVqpk2bxldffdWj99GdY5Flf3jllVc6fC6z2czrr78OdH1/sLQC3nLLLdjZ2fXoPQAcPXqU2NhY/vKXv1BUVMTUqVOZO3cuxcXF/PGPf2TKlClUVlZ2+NicnBzGjh3LF198wYQJE7jyyiuprq7mlVdeYd68eR3+HR966CGWLVvGgQMHGD9+PFdddRU5OTnMnDmTVatWdVpnT/cbgF27djFu3DgSExOZPn06V199NS4uLj36fQlxSahCiEsqJCREBdS33377gvedO3euCqh33nlnu9tnzJihAurmzZutt23dulUF1DFjxqhVVVXnPNfevXvVkpKSDmvJysrq8PU3b96sAiqgxsTEqPn5+ed9T2c/j6VOQP373//ebtuWLVtUBwcHFVDXrFlzwfd3pieeeEIF1CeeeKLd7W+//bYKqMuWLevwcaqqqsuWLevw9//666+rgOrl5aUmJSVZbzebzdbXc3NzU4uKijp877a2tuq3337bYT2urq5qXV1dpzWd7Te/+Y0KqOHh4e1+p01NTeqKFStUQB06dKja2NjYpfd2IXfddZcKqLNmzerS/S372tl/8wu9fmd/n6qqKvXrr78+5/00NTWpv/vd71RAXbhw4TnP19nrdfY6WVlZKqCGhIR0+t6mTJmiAuqXX355zrZDhw6pgOrt7a02NDR0+hxnSklJUfV6vaooirpy5cp223744QfVzs5OBdR169a122b57M2YMaNLr3Omhx56yPr3CQ0NVR944AH1vffeU48cOaKazeZOH9fZ7y0/P1/19PRUFUVRX3vtNdVkMlm3lZSUqLNnz1YB9c9//nO7x/33v/9VATUiIkJNTk5ut23r1q2qi4uLamdnp6amprbbZqndwcFB3bhxY7ttzzzzjPUzVVhY2OXfSU+ORS0tLdbP94EDB855zm+//dZ6bOyK5uZmVafTqYD63nvvdbn2s9XV1anh4eEqoP7hD39o97mpra1VlyxZogLq3Xff3e5xluMYoC5fvrzdPnzq1Ck1MDBQBdQPP/yw3eO+++47FVCdnJzUbdu2tdv297//3fqcZ++rPd1vLJ9rQP3tb3/b7nFC9CXS0iREH+Ll5QW09oO/kMLCQgCmTZvW4dW4cePG4enp2eNaXnnllS7Pwna2MWPG8Lvf/a7dbTNmzOCXv/wlAP/61796XFdv+ec//wnA//3f/xEXF2e9XVEUnnjiCWJiYqioqOCNN97o8PEPPPDAOTORLV++nKioKCorK9m3b1+X6mhoaLC2Zjz//PPtukHa2try0ksv4evrS1ZWFp9//nk33mHnLFNPd3VigDPvd/a01T3h4uLCddddd86Vd1tbW/7+978TEBDAmjVrqK6uvujXuhBL64Llb3AmS4vDvffei729fZee78UXX6SlpYUbbrjB2kJnsWDBAn76058CnNPV8WI8++yzPPzww9ja2pKdnc3LL7/MXXfdxahRo/Dx8eH+++8/p4vn+bzwwguUlpZy33338Ytf/AKd7sdTBU9PT1auXImtrS2vvPKKteXRbDZbu1J9/PHHxMTEtHvO6dOn88c//pGmpib+85//dPi6P/vZz5g9e3a72x5//HHGjRtHZWUlb775Zpffg0V3jkU2NjbWWSLPtz90dSbJsrIya8uft7d3h/d59dVXWb58+Tk/Z3r33XfJyMjgmmuu4cknn2z3uXF0dOS///0vPj4+vPfee5SXl5/zGkFBQbz66qvt9mFL9zyADRs2tLu/paX8/vvvZ9q0ae22/e53v2t3vDz7cd3db840bNgw/vrXv7Z7nBB9ieyZQvQhli9YS//+8xk7diw2Nja89dZbvPrqq+Tn5/daHT4+Pud8WXbH0qVLO7zd0i1qx44dnXaHuhxOnz5NRkZGu5rOpCiKdbzU5s2bO3yOa6+9tsPbR4wYAdDlk9R9+/ZRU1ODh4dHh8/p6OjIbbfddt5aLrUzT3B68++WnJzMc889xwMPPMA999xjPWFsaWnBbDZfdBe9rrjhhhsIDg5m48aNHD9+3Hp7ZWUl77//PjY2NvziF7/o8vNZxuV1tvbRihUrANi+fXuv/S5tbW15/vnnOXXqFK+//jq33347UVFRKIpCSUkJr776KjExMeeMlezM999/D8Ctt97a4fbAwEAiIyMpLi4mLS0NgKSkJPLy8ggPD+90TI5lvN2uXbs63N7RZxF+PJ70ZM2l7h6L7r33XhwdHfnwww/bBZD09HTWrVuHm5sbd955Z7fr6MzmzZt59913z/k504X+Hs7OzowbN46Wlhb27t17zvY5c+ZYu3CeqaNjVUtLCzt27ADo9H129jvtyX5zpuuvvx4bG5sOHytEXyChSYg+pKSkBMA6tul8wsPDef7552lubub+++8nICCA0NBQlixZwgcffEBTU1OP67jYNZzOnjL97Nvr6+u71Jp2qVhOEjw9PTEajR3exzJeqLPw09mMhpbna2ho6FYtnf3OulJLd1laNC2tlRdSVFRk/XdnV8y7o7a2lhtvvJG4uDgeffRRXnnlFd5++23rCaPl9aqqqi76tS5Er9dbWx3OHMvy7rvvUltby3XXXUdwcHCXn+9Cf0/L37KhoaHXPwN+fn78/Oc/54MPPuDYsWPk5+fz3HPP4erqSllZWacnu2ezLLA6bdq0cybQsPwcPXoU+LHl0fKYjIyMTh9jmUyjs9bKCx03Tp8+3cXfRNef8+xjkbu7O3fddRf19fX873//s97+2muvoaoqd999d4cBpCMeHh7WC2CdvefPP/8cVVVRVZWcnJwO72P53d51112d/m5/+OGHTl+nO8eq0tJS6/8v9LvrrM7u7DdnGghrB4qBTaYcF6KPUFWVpKQkAKKjo7v0mAceeIBbbrmFb775hh07drBjxw4+/vhjPv74Y5544gm2b9/eo+m2HRwcuv2Y7uqoe0Znemtwe2/qz11I4uPjef/99zlw4AAtLS0XnOI6MTERaJ3a+3zh7myd/d1+97vf8dVXXxEVFcU//vEPxo8fj5eXl7XbkWW9su7sIxfjJz/5CX/5y19YuXIlTz31FM7Ozrz22mtA9yaA6Gt8fX351a9+RWhoKDfeeCNHjx4lLS3tgpO6WP5uixcvtk4e0xlLF2DLY/z8/KyTWnTGEtq761LtD2c/74MPPsh//vMfXn/9dR555BEaGhp4++23URSlW4s86/V6YmJiSE5OZt++fT1uobL8bufPn3/BLrUdTTl/uY5VPdlvznQ5vneEuBgSmoToI3744Qdrd5B58+Z1+XG+vr785Cc/4Sc/+QkAx48f55577iEhIYHf/va353T1uByysrI6vN0yfbLBYGj3pWk5We5sDItlqvTeYlmUt7S0lKqqqg5bmyxXTS/1Ar6W5+/sd3Yparn22mt59NFHqays5Ouvv7bOMtcRVVWt0zMvWrSo3QlYT/9un376KQCffPLJOWNfgA677lxKnp6e3HHHHbz55pusXLmSYcOGceLECUaOHHnOGJsLCQwMJCMjg8zMTEaPHn3Odsvf0mAwdKlFuTeceTwpKSm5YGgKDg4mLS2N3/zmN4wbN65Lr2FpjfP09Ox0CvoLycrK6nC8jOW4ERQU1KPn7EhnxyKAkSNHMnfuXDZs2MDq1avJy8ujoqKCBQsWdHuNuuuuu47k5GQ+/fRTnn32WWxtbbv9HoKDgzl+/DgrVqxg8eLF3X58d3h6emJvb09jYyPZ2dntFry26Gwa/J7sN0L0J/33UqkQA0hlZSW/+tWvALjyyis7HWjbFVFRUfzmN78BOGeRRMtJ7vnWWOkN77//foe3W9Ywmjp1arvWDUsYOHbs2DmPqaur63QsT0/fT1BQkPXkp6MTPFVVrbfPmjWrW8/dXePGjcPZ2ZmysjK++eabc7bX19db11TqrVrCw8Ot68w8/vjj512r5bXXXiMlJQU7Ozt+/etft9t2vr+bqqqsXr26w+e0rB/W0VXxtWvXWrupXqzu7B8PPvgg0Dowv7sD/s9kGbfTWXB46623gNYuTN1ZxLYzXWl9sSw9AF0L3gsWLAB+DLddYWktPHr0KEeOHOny487U2Tpultu7sgbZ2bp7LLI4c/rxnkw7b/Hggw9iNBrJz8/n//2//9ftx0PP/h49pdfrrUs5fPDBBx3ep7O/0+WsUwgtSGgSQkOWE8sJEyaQlpaGv79/p7O1nW3Tpk388MMP56x5oaoq3333HXDuSanlSm1PT2q6av/+/TzzzDPtbtuxY4f15MMSEC3mzp0LtJ6wnjlup7a2lp/+9Ked9vW3vB9LP/nueOyxxwB48sknSU5Ott6uqip//etfOXjwIG5ubtYWvEvFYDBYT84fffTRdq0zzc3NPPTQQxQUFDB06NBevcr86quvEhoaSlZWFrNnzz5nn2hpaeG5556znjz+97//Peeqs+Xv9t5777X7GzQ3N/Ob3/ymw0Hp8OMA9Jdffrnd7SdOnODnP//5xb2xM3h7e2NnZ0dBQYE1qHUmOjqa2bNnc+zYMb755huMRmOXxwCd6aGHHkKv17Nq1apzTtjXrVtnnTnOsv9drMrKSsaOHct7771HTU3NOdszMzO55557gNZuj52NbznT448/jpubG8899xz/+te/OhwfmZWV1e792dra8sQTT6CqKjfccIN1MoEzmUwmNm3a1Olita+//vo5kz08//zzJCYm4uLiYp1Eozu6eyyyWLhwIREREaxZs4bk5GTCw8OtoaA7vLy8WLlyJTqdjmeffZaf/OQnHU7ao6oqO3fu7PA5fvrTnxISEsJnn33Gb37zmw5bdgsKCrr83XEhDz/8MND6+Tx70o5nnnmm3ZpxZ+rJfiNEv3J5ZzgXYvCxrPsxZcoUddmyZeqyZcvU2267TZ07d67q4eFhXZ9i5syZamZmZofP0dE6Rs8//7wKqEajUZ05c6Z6++23qzfccIP19VxdXdutP6SqqvrKK6+ogOrs7KzeeOON6ooVK9QVK1aox48fV1W162vFXGidpgcffFDV6XTqqFGj1CVLlqgzZsywrlfy0EMPnfN8TU1N6rhx46x1X3311eqCBQtUb29vNTAwUL3nnns6XKepsbFRDQgIsK5XtXTpUnXFihXqM888Y71PZ2v7mM1m63pFer1enTNnjrpkyRJ1+PDh1jVjfvjhhy6/9wu93vk0NDSoc+bMsb7uwoUL1VtvvVUdMmSICqienp7qvn37euW1zpSTk6PGx8ergKooijp+/Hj1tttuU6+77jrV29vbun/95z//6fQ5Fi1aZK37yiuvVK+77jo1KChINRqN1vWDzl4H6IsvvlAVRVEBNTo6Wr3tttvU2bNnq7a2turs2bPVyZMnd7huV3fXaVJVVV28eLEKqMHBweqSJUus+3xHVq1aZf08PvDAA135FXboP//5j3V/Hzt2rHr77berU6ZMsb7nP/3pT+c8pqfrNJWXl1trtre3VydMmKDefPPN6uLFi9WJEyda6wgJCTlnfaTz/d62bt2qenl5qYDq4+Ojzp49W73jjjvUa665xrpm0MSJE8953OOPP26tZ9SoUeqiRYvU2267TZ05c6bq5uamAurrr7/e7jGW+z/88MOqoijq9OnT1SVLlqjR0dEqoNrY2KifffZZt34vPT0WnemFF16w1vavf/2rW69/ttWrV1s/UzY2Nmp8fLx60003qXfeeae6YMEC1c/PTwVUnU6nLl269JzHHz58WA0NDbWuHzd9+nT19ttvV6+//np15MiRqqIoqq+vb7vHdLa+ncX59rn77rvPWs/MmTPVJUuWqKNGjVJ1Op31c93R43qy31zscUyIy0VCkxCXmOUk+8wfJycnNSAgQJ0xY4b66KOPqomJied9jo5CU3p6uvqnP/1JnTNnjjpkyBDVYDCo7u7uakxMjPrb3/5WzcnJOed5TCaT+tRTT6mjRo1SDQaDtR7L8/ZWaNq8ebO6ceNGdc6cOaqrq6vq4OCgjhs3Tn3nnXc6fc7y8nL1/vvvV4OCglRbW1s1MDBQ/elPf6oWFhae98v/0KFD1pN8y8nQmfVf6Av5ww8/tJ7Q2draqsHBwery5cutQbKr772rr9eZ5uZm9bXXXlOvuOIK6yKg4eHh6gMPPKCePn26V1/rTCaTSf3www/VRYsWqQEBAaqtra11v3B0dFTT09PP+/iGhgb1D3/4gxoWFqba2tqqPj4+6pIlS9T09PTznpRv27ZNnTNnjurl5aU6Ojqqo0ePVv/2t7+pjY2NnS523JPQVFpaqv7sZz9ThwwZ0u69daS6ulq1sbFRFUXp9O/fVbt371YXL16s+vn5qXq9XvX09FSvvvrqcxa1tehpaDKbzeqePXvUv//97+q8efPUyMhI1cXFxfq3mDVrlvrcc8+pNTU15zz2QotDFxYWqn/84x/VsWPHWvfJoKAgdfLkyeoTTzyhpqSkdPi4nTt3qnfccYcaEhKi2tvbqy4uLuqwYcPU66+/Xn3zzTfVsrKydvc/82/y+uuvq3FxcaqDg4NqNBrV+fPnqzt37uzW70RVL+5YZHHs2DHr56C8vLzbNZytpqZGfeWVV9SFCxeqgYGBqsFgUO3t7dWAgAB17ty56pNPPqlmZGR0+viqqir1mWeeUSdNmmQ9Xvn7+6vjx49XH3/8cXXXrl3t7n8xoUlVVfWtt95S4+PjVYPBoLq6uqpz585VN2/efMHHdXe/kdAk+gtFVS/T9ERCCCH6hcrKSmbNmkVSUhLz5s3jm2++6fLirv3Zm2++yU9+8hPmzZvH2rVrtS5n0LBMy93XTkf+8Ic/8Le//Y2f/vSnnS7IK4QYPCQ0CSGEOEdxcTEzZszg2LFjLFq0iM8//7xXJi7oq2pra4mJiSEzM5O1a9d2awZLcXH6YmjKz89n5MiRVFVVcfjwYes4PCHE4DVwvwGFEEL0mLe3Nxs2bOCNN95AVVX279/PxIkTtS6r1z377LMcPnyYHTt2kJmZyfz58yUwDWK//e1vyc3NZcOGDVRUVPDzn/9cApMQApCWJiGEEIPYzJkz2bp1K15eXlxzzTU899xzuLu7a13WoNKXWppCQ0M5deoUfn5+3HrrrfzjH/8YFF1ThRAXJqFJCCGEEEIIIc5D1mkSQgghhBBCiPOQ0CSEEEIIIYQQ5zHoJoIwm83k5eXh4uJi7UcthBBCCCGEGHxUVaW6upqAgAB0us7bkwZdaMrLyyM4OFjrMoQQQgghhBB9RE5ODkFBQZ1uH3ShycXFBWj9xRiNRo2rEUIIIYQQQmilqqqK4OBga0bozKALTZYueUajUUKTEEIIIYQQ4oLDdmQiCCGEEEIIIYQ4DwlNQgghhBBCCHEeEpqEEEIIIYQQ4jwkNAkhhBBCCCHEeUhoEkIIIYQQQojzkNAkhBBCCCGEEOchoUkIIYQQQgghzkNCkxBCCCGEEEKcR58KTdu2bePaa68lICAARVFYtWpVu+2qqvJ///d/+Pv74+DgwNy5c0lLS9OmWCGEEEIIIcSg0KdCU21tLbGxsbz66qsdbn/mmWd46aWX+Pe//82ePXtwcnLiqquuoqGh4TJXKoQQQgghhBgs9FoXcKYFCxawYMGCDrepqsoLL7zAH/7wBxYtWgTAypUr8fX1ZdWqVdx2222Xs1QhhBBCCCHEINGnWprOJysri4KCAubOnWu9zdXVlYkTJ5KQkNDp4xobG6mqqmr3I4QQQgghhBBd1W9CU0FBAQC+vr7tbvf19bVu68hTTz2Fq6ur9Sc4OPiS1imEEEIIIYQYWPpNaOqp3/3ud1RWVlp/cnJytC5JCCGEEEII0Y/0m9Dk5+cHQGFhYbvbCwsLrds6Ym9vj9FobPcjhBBCCCGEEF3Vb0LT0KFD8fPzY+PGjdbbqqqq2LNnD5MmTdKwMiGEEEIIIcRA1qdmz6upqSE9Pd36/6ysLA4ePIiHhwdDhgzh4Ycf5q9//SuRkZEMHTqUP/7xjwQEBHD99ddrV7QQQgghhBBiQOtToWnfvn3MmjXL+v9HHnkEgGXLlvHOO+/w61//mtraWn76059SUVHB1KlTWbNmDQaDQauShRBCCCE0UVdXx1dffaXpeG1nZ2cWLVokE22JAU9RVVXVuojLqaqqCldXVyorK2V8kxBCCCH6pby8PP73v/9RUlKidSno9XpuvfVWJkyYoHUpQnRbV7NBn2ppEkIIIYQQ53fgwAE++ugjmpqaMNrYMMvDAzvd5R+mrgIHqqrIrK/ngw8+4NSpU1x//fXo9XJ6KQYe2auFEEIIIfoBk8nEd999x6ZNmwAIMRi4xtsbBxsbzWoKMRjYVVFBQmUl27dvJzc3l7vvvlt684gBp9/MnieEEEIIMVhVVlby73//2xqYJhiN3OTrq2lgAlAUhSnu7lzv44OdopCZmck///nPdhN7CTEQyJgmIYQQQog+SlVV9uzZw1dffUVDQwO2isJ8Ly+GOzlpXdo5ypqbWVVURFlzMwDTpk3jmmuukQm7RJ/W1WwgoUkIIYQQog8qLS3l448/JjU1FQBfOzsWeHnhZWencWWdazKb2VxWxqGaGgDc3d259dZbGTFihMaVCdExCU2dkNAkhBBCiL7MbDazfft2vvvuO5qamtArClPc3Ig3GtEpitbldcnJ+nrWlZZS2dICwPjx47nhhhtw6oMtZGJwk9DUCQlNQgghhOirCgoK+Pjjj8nKygIgyN6eq7y8cLe11biy7msym9lZUcH+qiqgdU2nxYsXExcXh9JPwp8Y+CQ0dUJCkxBCCCH6mqqqKtasWUNCQgJmsxk7RWG6uzuxLi79PmDkNTSwprTUOtYpPDycRYsWERISonFlQkho6pSEJiGEEEL0FY2NjWzevJlNmzbR2NgIQISDA7M9PTEOoPWOWlSV3RUV7KuqoqXt1HPMmDFcc801eHl5aVydGMwkNHVCQpMQQgghtGYymUhMTOSHH36gqq37mp+dHTM8PAgewLPNVbW0sLO8nCO1tQDY2NgwdepUrrrqKhnvJDQhoakTEprEYNfU1MS+fftoaGggNjYWT09PrUsSQohBQ1VVjh49yjfffENBQQEArno909zdGe7o2O+74nVVUVMT28rKyG5oAMBgMDBv3jymT5+ObT8cvyX6LwlNnZDQJAa7HTt28NlnnwEwYsQIfv7zn2tckRBCDHyWsLRu3Tqys7MBMOh0THJ1JdZoRD9IwtLZsuvr2VpWRnHbeCdXV1dmz57NpEmTsLe317g6MRh0NRsMnM6yQoguqaio6PDfQgghep/ZbCY5OZn169eTm5sLgI2iMNbFhYmurhhsbDSuUFuhDg4MCQjgWG0tO8rLqays5KuvvmLdunXMnDmTqVOn4ujoqHWZQkhoEmKwqa+v7/DfQggheo/JZGLv3r1s3LiRoqIiAGwVhTgXF8YZjTgNoEkeLpZOURjl7MxwJyeO1tSQWFlJRW0t33//PRs3bmTq1KnMnDkTFxcXrUsVg5h8YoUYZCQ0CSHEpdPU1MTu3bvZtGkT5eXlQGs3vLFGI2NcXHAY5C1L56NXFGJcXBjt7MyJ2lp2V1ZS2tDAhg0b2Lp1K5MmTWL27Nm4u7trXaoYhCQ0CTHInBmUGhsbMZlM2MiXuBBCXJSqqip27drF9u3bqampAcDJxoZxRiOxLi7Y6XQaV9h/6BSFEc7ORDk5kVFfz+6KCgqamti2bRs7d+4kPj6e6dOnExwcrHWpYhCR0CTEIFNXV9fu//X19Tg7O2tUjRBC9G85OTls3bqVAwcOYDKZADDa2DDe1ZVoZ2f0EpZ6TFEUIhwdCXdw4FRDA7srK8lpaCAxMZHExETCwsKYPn06MTExcvFPXHISmoQYZCxXQM/8v4QmIYToOpPJREpKClu3biUrK8t6u7+dHWONRoY5OWEzSGfDuxQURSHEwYEQBwfyGxvZX1VFam0tmZmZZGZm4ubmxrRp05g0aZKs9SQuGQlNQgwytW0LCnb2fyGEEB2rqakhISGBHTt2WGcf1QHDnZwYazTiL1NkX3L+9vZc4+1Njbs7B6urSa6upqKigm+//ZY1a9Ywbtw4pk+fTkBAgNaligFGQpMQg4jJZLKOaXI0ulFXVXFOy5MQQoj2cnJy2LFjB/v37aO5pQUAR52OWBcXYl1ccJaZ8C47Z72eqe7uXOHqyvHaWg5UV1PU1ERCQgIJCQlERkYybdo0Ro8eLV33RK+QT7kQg0h1dTXQ2tXByd2DuqoK621CCCF+1NjYyP79+9m1axc5OTnW233buuANd3IatAvS9iV6nY7RLi6McnYmt7GRA1VVpNXVkZaWRlpaGkajkSuuuIJJkybh4eGhdbmiH5PQJMQgYglIdg6O2Ds6t7tNCCEE5ObmsnPnTvbt20djYyMANsAwJydiXVwItLdHkbDU5yiKQpDBQJDBQFVLC8nV1Ryqrqaqqop169axfv16oqKimDJlCiNHjpTWJ9FtEpqEGESqqqoAsHN0wr5thXXLbUIIMVg1NTVx4MABdu3axcmTJ623u+v1xLS1YjjKSXa/YdTrmebuzmQ3N9Lr6kiuruZUQwPHjh3j2LFjuLq6MmnSJCZNmoSbm5vW5Yp+QkKTEIOIJSDZOzhh5+DU7jYhhBhs8vLySEhIIDExkYaGBqB1YodIR0diXVwINhikVakfs1EUhjs5MdzJifLmZlKqqzlcU0NlZSVr1qxh7dq1jBo1ismTJzNixAh0Mj28OA8JTUIMIpbZngxOzhicnNvdJoQQg0FjYyMHDhwgISGhXauSq15PjLMzo11ccJJWpQHH3daWGR4eTHF3J622luTqak43NnL48GEOHz6Mm5sbEydOZOLEiXh6empdruiDJDQJMYhUVlYCYO/sjL2EJiHEIKGqKidPnmT37t0cOHDAOlZJB4S3tSqFSKvSoKBXFEY4OzPC2ZnSpiZSamo4UlNDRUUFa9euZd26dQwfPpwrrriC6Oho9DIzomgje4IQg8iPLU0uGJxdgNZ1R1paWuSLQQgx4NTW1rJ37152795Nfn6+9XZ3vZ7otrFK0qo0eHna2THLw4Np7u6k19VxqLqakw0NHD9+nOPHj+Pk5MT48eOZNGkSfn5+WpcrNCZnSUIMIuXl5QDYOzlja29AZ2OD2WSioqICLy8vjasTQoiLZzabSU9PJyEhgZSUFFra1lXSKwrDHB2JdnEhSGbAE2fQKwpRTk5EOTlR0dzM4ZoaDtfUUFNby5YtW9iyZQtDhw5l0qRJxMXFYS+LGA9KEpqEGCRUVaWsrAwAB2cjiqJgcDZSV1lOeXm5hCYhRL9WVVVFYmIiCQkJlJSUWG/3sbMj2tmZEU5OGKRVSVyAm60tU9tm3suqr+dQdTUZ9fVkZWWRlZXFl19+SXx8PJMnTyYoKEjrcsVlJKFJiEGirq6OpqYmAGvXPAeX1tBkCVNCCNGfmM1mTpw4QUJCAocOHcJsNgNg1zZuJcbZGV9pFRA9oFMUwh0dCXd0pKalhSM1NRyqqaGioYGdO3eyc+dOgoODmTx5MmPHjsVgMGhdsrjEJDQJMUhYgpGdgyM2beOXLOFJQpMQoj+prKxkz549JCQktDt+BdjbE+3szHAnJ+xk+mjRS5z1eia6uTHB1ZWchgaSq6tJq6sjJyeHTz75hFWrVjF27FgmT55McHCwdP0coCQ0CTFIlJaWAq2tSxYOLq7ttgkhRF9lNps5duwYCQkJHDlyxNqqZK/TMcrJiWgXF7zt7DSuUgxkiqIwxMGBIQ4O1JlMra1P1dWUNTaSkJBAQkICgYGBTJ48mfj4eBwcHLQuWfQiCU1CDBLW0GR0s94moUkI0ddVV1eTkJDAzp072y2REGRvT7SLC8McHbGVViVxmTna2DDe1ZVxRiOnGxtJqa4mta6O3NxcPvvsM77++mvi4+OZNm0agYGBWpcreoGEJiEGCcvAaMe2oATgaJTQJITom06ePMn27ds5cOAAJpMJAAedjpFtY5U8pVVJ9AGKohBsMBBsMDDbZOJobS0p1dWUNjVZW5/Cw8OZNm0aMTEx2MhkJP2WhCYhBglLaHIw/hiaLP+urKykqakJOzkJEUJoqLm5maSkJLZv386pU6est/vZ2THWaGSYoyN6aVUSfZSDjQ3xRiNjXVzIbWwkqaqKtLo6MjIyyMjIwGg0MmXKFCZPnozRaLzwE4o+RUKTEIOEpTXJ8YzQZGtvQG9nT0tTI6Wlpfj7+2tVnhBiECsvL2fHjh0kJCRQW1sLgA0w3MmJMUYj/jIDnuhHFEUhyGAgyGCgpqWF5OpqUmpqqKqqYvXq1axbt47Y2FimT59OaGioTBzRT0hoEmIQaGlpsc4w5ejqbr1dURQcXd2oKi6kuLhYQpMQ4rLKzs5m48aNHDp0CFVVAXCxsSHOxYVoFxccpSuT6Oec9XqmuLtzhZsbqbW1JFVXk9fYyIEDBzhw4ABBQUHMnDmTsWPHSte9Pk5CkxCDQElJCaqqYmNri52DY7ttjsYfQ5MQQlxqqqqSmprK+vXrSUtLs94ebDAwxsWFCEdHdHLlXQwwNm1rh41wdqawsZGk6mqO19Zy+vRp3n//fVavXs2cOXOYMGECtra2WpcrOiChSYhBwBKIHF3dz+kGYGl5ktAkhLiUzGYzR44cYf369Zw8eRIAHTDS2Zl4o1GmCxeDhq+9PfPt7Znh7k5ydTX7q6ooLS3l008/Zc2aNcyaNYspU6ZgL91S+xQJTUIMApZA5HTGdOMWTq6ttxUVFV3GioQQg4XZbCYpKYn169eTn58PgF5RiHZ2ZryrK0a9nIqIwcnBxoYr3NyINxo5VFPD3spKqqqq+Prrr1m/fj0zZsxg+vTpODo6XvjJxCUnRyohBoGCggIAHN08ztnm1HZbYWHhZa1JCDGwmUwmEhMT2bBhg3X2TjtFIc5oJN5oxEnGbwgBgK1Ox1ijkVgXF47W1LCnspKKujpWr17Npk2bmDp1KrNnz8bZ2VnrUgc1CU1CDAKWQOTsfm5osgSpmpoaamtrcXJyuqy1CSEGnrS0NL744gtry5JD20nhGBcXDBKWhOiQjaIQ7eLCKGdnUuvq2FNRQXFjIxs3bmTXrl0sXLiQKVOmyIQRGpHQJMQAp6qqteudUwctTXpbWwzOLjTUVFNQUEB4ePjlLlEIMUCUlZXx9ddfc/DgQQAMOh1XuLoS4+KCnayvJESX6BSFKCcnhjs6kllfz47ycorr6/niiy/YtWsXN954I8OGDdO6zEFHQpMQA1x1dTV1dXWgKO2mGz+Tk5uHhCYhRI81NTWxceNGNm7cSHNzMwoQ6+LCFDc3HOSquBA9oigK4Y6ODHVwIKW6mp0VFeTn5/Pqq68SGxvLokWL8PT01LrMQUNCkxADXG5uLgBOru7YdDLg2sXDi9LTJ8nLy7ucpQkh+jlVVUlOTubrr7+2rgUXZG/PHE9PmQ1PiF6iaxsLONzJiV0VFRysriY5OZmjR44we84c5s6di5183i45CU1CDHCWIOTi4dXpfVw8vYEfA5YQQlxIU1MTH330EQcOHABaF6Wd4eHBcEfHc5Y2EEJcPAcbG+Z4ehLj4sKmsjJyGhpYu3YtBw8eZMWKFfj6+mpd4oAmHYyFGOAsQci5LRh1xLItLy8PVVUvS11CiP6rtLSUF154gQMHDqADrnB15e7AQKKcnCQwCXGJedvZcYuvL9d6e+NsY0NhYSHPPfcchw8f1rq0AU1CkxAD3OnTpwFw8ey8pcnJzR1FZ0NjY6N1amAhhOjIiRMn+Ne//kVubi6OOh03+/kx1d1dJnoQ4jJSFIXhTk7cFRBAoL09DQ0NvPnmm6xduxaz2ax1eQOSHOGEGMBqa2ut0427+vh3ej+dzgajtw8AWVlZl6U2IUT/oqoqW7Zs4d///je1tbX42tlxZ0AAwQaD1qUJMWg52dhwi58fcS4uqKrKDz/8wNtvv01DQ4PWpQ04EpqEGMCys7MBcHR1x87gcN77uvkGABKahBAd++KLL/jqq68wm82McnLiNj8/jJ1MLiOEuHxsFIW5np5c5emJDZCSksILL7xAfX291qUNKP0uNFVXV/Pwww8TEhKCg4MDkydPZu/evVqXJUSflJmZCfwYiM7H3U9CkxCiY/v27WP79u0owGwPD+Z7eWEr3fH6JbOqUtnc3OGPWca09mvRLi7c5u+Pk40N+fn5fPLJJzJOuRf1u0tE9957L4cPH+a9994jICCA999/n7lz53L06FECAwO1Lk+IPiU9PR0AN7/Ou+ZZuLYFq4KCAqqrq3FxcbmktQkh+ofi4mI+/fRTACa5uTHWaNS4InExqltaeKOTmVJ/EhiIq63tZa5I9CZ/e3uu9/Hho/x8kpKSGD58OJMmTdK6rAGhX10mqm9bDfmZZ55h+vTpRERE8Kc//YmIiAhef/11rcsTok+pqqri5MmTAHgFhVpvV1WVluZmWpqb212BsndwxMXLB1VVOXLkyOUuVwjRB7W0tPDuu+/S2NhIkL09V7i6al2SEOIC/O3tmeLmBrR2qy0oKNC2oAGiX4WmlpYWTCYThrMGnTo4OLBjx44OH9PY2EhVVVW7HyEGgyNHjqCqKkZvXwzOP7YamVpa2PT2K2x6+xVMLS3tHuMTEg7AoUOHLmutQoi+6fvvvycnJweDTsdCb290Mp24EP3CBFdXQgwGmpubeeedd2g56/tedF+/Ck0uLi5MmjSJJ598kry8PEwmE++//z4JCQnk5+d3+JinnnoKV1dX609wcPBlrloIbaSkpAA/BqGu8Altve+JEydobGy8JHUJIfoHk8nE9u3bAbjK01MmfRCiH1EUhYVeXjjodOTn53PixAmtS+r3+lVoAnjvvfdQVZXAwEDs7e156aWXWLJkCbpOBqT+7ne/o7Ky0vqTk5NzmSsW4vKrqqqyHiC9Q7sempw9vHBwMdLc3GwNXUKIwSkvL4/m5mbsdToiHB21LkcI0U1Oej1DHVpnzj116pTG1fR//S40hYeHs3XrVmpqasjJySExMZHm5mbCwsI6vL+9vT1Go7HdjxAD3Y4dOzCZTLj6+OPi0fmitmdTFIXAqGgAtmzZIrPuCDGIWU6y/OzsUKRbnhD9kp+9PSChqTf0u9Bk4eTkhL+/P+Xl5axdu5ZFixZpXZIQfUJTU5N1jF9IzNhuPz5oRDQ6Gz2nT5+2zr4nhBh8LBPJ+LeddAkh+h/L5/fkyZNyIfQi9bvQtHbtWtasWUNWVhbr169n1qxZREVFcffdd2tdmhB9wr59+6itrcXgbMQnNKLbj7czOBAwfCQAmzdv7u3yhBD9hGXGLU+ZglqIfsvy+a2traWmpkbjavq3fheaKisrue+++4iKimLp0qVMnTqVtWvXYisHdSGor69nzZo1AAwZHdfpWL8LCRnd2kJ15MgR0tLSeq0+IUT/4evrC0BhU5PGlQghesry+XVycsLJyUnjavq3fheabrnlFjIyMmhsbCQ/P59XXnkFV1k3QggAvvnmGyorK3EwuhI8MqbHz+Pk5k7QiNaxTR999JHMpCfEIBQVFQVAdn29xpUIIXrK8vkdPnx4jy+kilby2xNigEhNTWXXrl0AjJo+Dxv9xbW+Dps4DXsnZ0pLS/nhhx96o0QhRD8yfPhwFEWhpLmZGlnjRYh+yRKaRowYoXEl/Z+EJiEGgMbGRj7++GMAgkbG4BEQdNHPqbezZ+S0uQBs3bqVrKysi35OIUT/4ezsTFBQ67HkeG2txtUIIbqrrLnZ2j1v+PDhGlfT/0loEqKfa25u5n//+x+lpaUYnFwYNmFqrz2395Ch+EeOQFVV3nzzTYqKinrtuYUQfd8VV1wBwI6KCsqbmzWuRgjRVWZV5YfiYqC1lUmGslw8CU1C9GMmk4l33nmHEydOYKO3JWbu1ejtend64Kgps3Dx9KGmpoZXX32V0tLSXn1+IUTfNXnyZIYNG0ZL2wmYWaYsFqJf2F1ZSUFTEw4ODtx2221alzMgSGgSop8ym828//77HD58GJ2NDWPmL8LN17/XX8fWzp74hTfg5OZBRUUFr732GpWVlb3+OkKIvken03H77bdjMBjIb2pij3z2hejzChobSaioAGDx4sW4ublpWs9AIaFJiH7IZDLxySefcODAARSdjtgrr8EjIPiSvZ6dgyPxV9+Eg4uRkpISCU5CDCLu7u4sXrwYgISKCk7JbHpC9Fl1JhPfFxejAmPGjCE+Pl7rkgYMCU1C9DPl5eW8/PLL7N69GxSF6NkL8B4Sdslf1+DkTPzVi7F3cqagoIBnnnmG48ePX/LXFUJob9y4cYwZMwYz8GVRkQQnIfqgOpOJTwsKKG9pwdXVlZtvvhlFUbQua8CQ0CREP3LkyBGeeeYZsrKy0NvaETv3avzChl2213c0ujL+mptx9vCipqaGf//733z//feYTKbLVoMQ4vJTFIU77riDqKgoWlRVgpMQfUxtW2AqaW7GaDRy3333yWK2vUxCkxD9QEtLC6tWreK///0vdXV1GL18uOKmO/AdGnnZa3F0dWPi9UsIGhGNqqqsW7eOV199lYq2/tNCiIHJ1taWe++9lxEjRkhwEqIPOTMwubq68sADD+Dr66t1WQOOhCYh+riCggJeeuklNm/eDMCQ0WOYsOhWHI1umtVko9czctpcomcvxMbWjoyMDJ555hkOHjyIKrNrCTFg2drasmLFCkaOHGkNTlkSnITQTHVLC58WFFDaFpjuv/9+fHx8tC5rQNJrXYAQomOVlZWsXr2a3bt3o6oqejt7Rs+ch09ohNalWflHDMfV25fkjd9TXVLE22+/zdChQ7nuuusIC7v046yEEJefJTj973//4+jRo3xZWMgsDw/GuLjI+AkhLqP8xkZWFRVRazJJYLoMJDQJ0cc0NDSwceNGNm/eTHPbYpI+oREMnzQDBxejxtWdy9HVjYmLbiUzKZGTKfvJysrixRdfJCYmhmuuuUa6CAgxAOn1elasWMEnn3xCYmIim8rKKG1qYranJzYSnIS45I7X1LCmtJQWVcXPz4+f/vSneHp6al3WgCahSYg+oqWlhV27drFmzRpqa2sBcPP1Z9jE6bj5BWhc3fnpbPREjJtM0IgYMvYnkHviCCkpKRw+fJhJkyYxf/58jMa+F/iEED2n1+u5/fbb8fPz49tvvyW5poaylhau8/bGwcZG6/KEGJBUVWVnRQW725b9GDlyJMuWLcNgMGhc2cAnoUkIjTU3N5OUlMTatWspKSkBwNHVnWETp+IdEt6vursYnJwZNf1KQqLHkrZnB8WnMtm5cyd79+5l5syZTJ06FVdXV63LFEL0EkVRmDNnDj4+Prz33nvkNDTwQX4+N/j44Glnp3V5QgwoTWYzq0tKSKurA2D27Nlce+216HQyRcHlIKFJCI2Ulpayc+dOdu/ebW1ZsnNwJDx+EoFRo/v1QdDZ3ZMx8xdRln+a1N3bqSouYN26dWzYsIHY2FimTZtGWFhYvwqEQojORUdH8/DDD/PGG29QVlbG+/n5zPfyYrhMeSxEryhvbubroiJKmpuxsbHh1ltvZeLEiVqXNahIaBLiMjKbzZw4cYIdO3Zw5MgR60xzBicXgkfFEDwqDr3twLk66+EfxMTrb6MoK52Thw5QUZhHUlISSUlJ+Pv7M23aNMaNG4e9vb3WpQohLlJAQACPPvoob7/9Nunp6XxbXEx+YyPT3d3RyQUSIXosva6OH4qLaVJVjEYjd999t0y2pAEJTUJcBnV1dezZs4edO3dSXFxsvd0jcAhDRsXiNSSsX7csnY+iKPiGReIbFklVSRE5R5PJTztOfn4+n376Kd988w0TJkxg6tSpMmmEEP2cs7Mzv/zlL/nuu+/YtGkT+6qqKGxq4hpvb5xknJMQ3WJuG7+0p238UlhYGMuXL5du7hqR0CTEJWI2m8nIyGD//v3s37+fpqYmAPS2dgQMG0nwqFic3Dw0rvLyMnr5MGr6lQybOI28E0fJOZpMXVUF27ZtY9u2bQwbNoyJEycyevRoGdQqRD9lY2PDokWLCAkJ4cMPPySnoYH38vK4ztubAPlcC9EldSYT3xcXc7KhAYCZM2dy3XXXYSMXHzQjoUmIXmQ2m8nMzOTgwYMcPHiQ6upq6zZnd0+CR8XiHzliQHXB6wlbewMhMWMZEj2G0tMnOXXkICWnskhNTSU1NRVbW1tGjBjBmDFjGDVqlHTfE6IfiouLw9/fn//9738UFhbycUEBsz08iJX1nIQ4r4LGRr4uKqLaZMLOzo4lS5YwduxYrcsa9CQ0CXGRzGYzWVlZ1qBUVVVl3aa3s8cnNIKAYSNx9w+UE4WzKIqCV3AoXsGh1FVVknfiCAWZJ6irrCAlJYWUlBRsbW0ZOXIkY8aMYeTIkRKghOhHfH19eeSRR/joo484ePAgG8rKKGxqYo6nJ3o5HgpxjiM1NawrLcWkqnh7e7NixQr8/f21LksgoUmIHjGbzZw8eZKkpCQOHjxIZVt/Y7AEpXB8w4bhGTgEnTSld4mj0ZWI8ZMJHzeJ6tJiCjPTKMg8QX1VJcnJySQnJ2NnZ8eoUaOIi4tj5MiR2MmUxkL0eQaDgeXLl7Np0ya+/fZbDtXUUNLUxHU+Prjo5TRECACTqrKlrIykth4qo0aN4q677sLBwUHjyoSFHK2E6KLm5mYyMjI4evQoycnJVFRUWLfpbe3wDg3HL9wSlOSj1VOKomD08sHo5UPE+MltASqVgoxU6qsrrbPvWQLU6NGjiYqKwtnZWevShRCdsKznFBgYyLvvvkt+XV3rOCcfH4JknJMY5GpNJr4tKuJ0YyMA8+fP56qrrhqwE0T1V3JmJ8R5lJSUcOzYMY4ePUp6erp1MgcAG1s7fELC8A0fhldQiASlS6B9gJpCdUkRBZmpFGSm0lBdZQ1QiqIQHBzMiBEjGDFiBCEhIfJlI0QfFBUVxaOPPsr//vc/8vLy+LSggLmensS4uGhdmhCaKG5q4svCQqpNJuzt7bnrrruIjo7WuizRATnLE+IMTU1NpKenc+zYMY4dO9ZuenAAe0cnvIJD8Q4JwzMoFBvpWnLZKIqC0dsXo7cvkROmUlVcSFF2OiU52VSXFnPq1ClOnTrF2rVrcXR0JCoqihEjRhAVFYXRaNS6fCFEGy8vLx5++GE+/vhjDhw4wLrSUqpaWpji5ibjPsWgkl1fzzdFRTSpKj4+Ptx7772y9EYfJmd8YlBTVZWioiJrSMrIyKC5udm6XVF0uPkFWCcrcPbwki/1PkBRFFx9/HD18SNywlQaamsoPX2SkpwsSk+foq6ujgMHDnDgwAEAgoKCrK1QoaGhMmWrEBqzt7dn6dKleHt7s3btWnZXVlLV0sJVXl7YyDFWDAKHqqtZX1qKGYiIiGDFihU4OjpqXZY4DwlNYtCpqakhLS2NtLQ0jh8/TmlpabvtBicXvIJD8QwOxTMwGL2dzNbW1xmcnAkcPorA4aMwm81UFuVTmtMaoqpKijh9+jSnT59m/fr1GAwGhg8fzrBhw4iMjMTHx0eCsBAaUBSFhQsX4uHhwSeffMLR2lqqTSYWeXtjkAsbYoBSVZVdFRUktE0gFR8fz+23345eeq70efIXEgNeTU0N6enppKenk5aWRkFBQbvtis4Gd/9Aa2uSk5uHnET3YzqdDne/QNz9AokYP5nG+jpKc7IpOX2S0pxsGhoarLPxARiNRiIiIoiMjCQiIgJvb2/5+wtxGV1xxRW4ubnx1ltvkdPQwIcFBdzs6ysz64kBx6yqrC0t5UhNDQDz5s1j4cKF8p3TT8gRSQw4tbW17UJSfn7+Ofdx9vDCwz8Ij6AheAQED/rFZgcyewdHAoaNJGDYSFSzmaqSIkpysinLP01lYR5VVVXtuvK5uroSERFhDVJeXtIlU4hLLSoqioceeoj//Oc/lFVW8mlBAbf6+eEswUkMEGZVZU1JCUdra9HpdNx8881MnjxZ67JEN8jRSPR7dXV11pCUnp5OXl4eqqq2u4+TuyceAcF4+AfhHhCEnUHWPRiMFJ3OOhYqHDC1tFBZVEBZXg7l+aepKMynsrKS/fv3s3//fqA1RFlaoSIjI/H09JQQJcQlEBgYyMMPP8xLL71EeXm5NTg5SXAS/Zyqqqw9IzAtX76c2NhYrcsS3SRHItHvVFdXk5mZSUZGRuchyc0Dj4Bg3AOCcPcPwt5BBleKc9no9XgEBOEREARYQlQ+ZXk5lOWdprKoNUTt27ePffv2AeDm5kZkZCTh4eGEhYXJmCghepGHhwcPPPAAL730EmUVFXxSWNganGSMk+inVEuXvLbAtGzZMglM/ZSEJtGnqapKaWmpNSRlZmZSVFR0zv0cXd1bW5IsIcnRSYNqRX/XGqKC8QgIBsDU0kxFYWuIKs87TWVRARUVFezdu5e9e/cC4OzsTFhYmPUnKChIZucT4iJ4enrywAMP8PLLL1NWUWFtcXKUz5XoZ1RVZX1pKYdralAUhbvuuou4uDityxI9JKFJ9Clms5m8vDwyMzOtQamqquqc+zm5e7YO9vcPxCMgCHtHZw2qFQOdjd4Wz8AheAYOAaCluZnKwjzK8k5TUZhLZVEBNTU1pKSkkJKSAoCdnR2hoaGEhYURHh5OSEgI9vYyA6MQ3eHl5cV9993HK6+8QmllJV8XFXGLn59MRy76lT2VlaS0BaY777yTsWPHal2SuAgSmoSmmpubOXXqlLUVKSsri4aGhnb3UXQ6jN6+uPsF4uYXgLtvILYGg0YVi8FMb2uLZ1AInkEhAJhNLVQWF1JRkEd5QS4VBXk0NTWSmppKamoq0DqbX3BwsDVEDR06FGdnCflCXIiPjw+//OUvef7558ltaGBTaSlXenlpXZYQXZJRV8eOigoAbr75ZsaNG6dtQeKiSWgSl1VdXR1ZWVnWVqRTp05hMpna3cfG1hY334C2kBSIq48vNnpbjSoWonM6G711evOhjEdVVWrKSynPz6WiIJfyglwaa2s4efIkJ0+eZPPmzQD4+vpax0SFhYXh4SHT3AvRET8/P5YuXcobb7xBck0NPvb2xLq4aF2WEOdV2tTE98XFAEyZMoUpU6ZoXJHoDRKaxCVVWVnZbjxSR5M22Dk4/tiK5B+Is4c3Op1Oo4qF6DlFUXDx8MLFw4sho2JRVZWGmirKC/KoyG8NUbUVZRQWFlJYWMiuXbuA1sklLC1RYWFh+Pn5yWdAiDajRo3i6quv5rvvvmNjaSmetrYESW8D0Uc1mEysKiqiSVUJDw/nxhtv1Lok0UskNIleo6oqxcXF1oCUkZFBaWnpOfdzNLrh5heIu18Abv6BOBrd5Cq7GJAURcHBxRUHF1cCIkcA0NRQb+3OV56fS3VJERUVFe3WinJ0dLS2QoWHhxMUFCSrxYtBbe7cueTm5pKUlMS3xcXcHRCAQSaGEH3QutJSyltacHNz4+6775Zj9wAif0nRY2azmdzcXGtIyszMpLq6+pz7uXh6t7Yk+bcGJZm0QQxmdgYHfELD8QkNB9omlyjKt3bnqyjMp66ujsOHD3P48GEAbG1trZNLhIWFMXToUJlcQgwqiqKwZMkS8vLyKCwsZEt5OfNlfJPoY9Jqa0mtq0On07FixQpcpCvpgCKhSXSZyWTi9OnTpKamkp6eTlZWFo2Nje3uo+hscPXxtY5HcvMLwNZOTu6E6Izetv0MfWazieqSYmtLVEVBLs2NDaSlpZGWlga0Ti4RGBhIeHg4w4YNIzw8HIN0VxIDnL29Pbfddhsvvvgih2tqGOHkRIiDLFQu+oZGs5mNZWUAzJ49myFDhmhckehtEppEp8xmM/n5+daTtfT09HNmttPb2uHmF9Da3c4/EKOXLzbSFC1Ej+l0Nrj6+OHq40doTDyqqlJbUdZucomGmmpycnLIyclhy5Yt6HQ6hgwZwrBhw4iMjCQ0NBQ7Ozut34oQvS4sLIypU6eyY8cO1pWWsjwgAFsZ/yf6gK1lZdSYTHh7e3PVVVdpXY64BOTsVlhZxiSlpqZag1JtbW27++jt7FsXkA0Ixt0vEBcPLxT5whLiklEUBWd3T5zdPQkeGQNAfU0VFfm5lOWfpiw3h/rqSrKzs8nOzmbdunXo9XqGDh1KZGQkw4YNY8iQIbLgrhgwrr32Wg4fPkxFRQUJFRVM9/DQuiQxyOU2NJBSUwPAbbfdJhetBigJTYNcWVmZNSClpqZSWVnZbrtOr8fdPwiPgGA8A4Jx8fSWkCSExhycjThEGvFvm1yivrqSsrzTlOWeoiwvh8a6Wuvn+ocffsDOzs7alS8yMpLAwECZnU/0WwaDgcWLF/Pmm29yoLqasUYjztLDQWhEVVW2l5cDcMUVVxAREaFxReJSkaPMINPc3ExqaiqHDx8mNTWVkpKSdtsVnQ1uvv54BAbjERCMq7cfOrlCLUSf5uDiSuBwVwKHj0JVVeoqyynNzaEs7xTleadpamzg2LFjHDt2DGidnS8iIoKRI0cyevRoGaws+p3Ro0cTGhpKdnY2eyormePpqXVJYpA62dDA6cZG9Ho9CxYs0LoccQlJaBoE6urqOHLkCIcOHeLYsWM0NTX9uFFRcPX2xSOgNSS5+QXIQrJC9GOKouDk5oGTm4d1rajq0mLK8nIoy8uhPP80dXV1pKSkkJKSgqIohIaGEhMTw+jRo/Hx8dH6LQhxQYqisHDhQl577TVSqquZ4OqKi7Q2ictMVVV2VlQAMHnyZNzc3DStR1xacoQZoMrKyjh06BCHDh0iIyMDs9ls3Wbv5Ix3SBhewaG4+wfJ7HZCDGCKomD08sHo5UNoTDxms4mq4iJKT2dTdDKT6pIisrKyyMrK4uuvv8bPz4/Ro0cTExNDcHCwdOMTfZZl5siMjAx2V1ZypbQ2icssq76e/MZGbG1tufLKK7UuR1xiEpoGCFVVyc3NtQal3Nzcdtud3T3xDg3HJyQco7evLCYrxCCla+uC6+brT3j8JOprqijOzqToZAbleacpKCigoKCADRs2YDQarQEqMjJSFmkUfYqltenll1/mcE0NU93ccJDu5OIy2ldVBcDUqVMxGo0aVyMuNfkG7OdKSkrYsWMHycnJlLWtDwCAouDmG2BdRNPR6KZZjUKIvsvB2ciQ0XEMGR1Hc2MDJTnZFGVnUJKTRVVVFbt27WLXrl3Y29szcuRIJk+eTGRkpFx4EX1CeHg4QUFBnD59mkM1NUxwddW6JDFIlDQ1caqhAUVRmD59utbliMtAQlM/pKoq6enpbN26lcOHD6OqKgA6Gz2eQSH4hIbjPWQodg6OGlcqhOhPbO0N+EdE4R8RhdnUQlneaYqy0yk+mUljXS1JSUkkJSXh7+/PzJkziY+Px9ZWxkAK7SiKwrRp0/joo484WFXFOKMRnQR6cRkcrK4GIDo6Gg+Z9n5QkNDUjzQ3N3PgwAG2bt3arvudV3AoQSOi8QwKkUkchBC9Qmejxys4FK/gUNSpKlXFheSlHiU39Qj5+fl89NFHfPvtt0yZMoUpU6bgKlf4hUbGjh3L119/TVVdHZn19UQ4ygVDcWk1ms0caVuXaerUqRpXIy4XCU39QFVVFTt37mTHjh3UtH1IdXo9AcNGEjJ6DE5ucoVDCHHpKIqCq48frj5+RIyfTO7xw5w6cpCammrWrl3Lhg0bGDt2LDNmzCA4OFjrcsUgY2dnxxVXXMGmTZtIrq6W0CQuueO1tTSrKr6+vgwbNkzrcsRlIqGpD6urq2PVqlXs27cPk8kEtM58N2RUHEFR0dgaDBpXKIQYbGztDYTGjmNI9FiKstM5dSiJisI89u7dy969ewkLC+PGG2+U8CQuq0mTJrFp0yay6+upaWmRxW7FJXW47QL2pEmTZHznICJHlT6qrKyM//znPxQUFADg5uvPkNFj8BkagU4nswMJIbSl0+nwCxuGX9gwKosKOHU4iYLMVDIzM3nppZdYtmwZo0eP1rpMMUj4+PgwdOhQsrKyOFpbKxNCiEumtKmJ/MZGdDod8fHxWpcjLqN+tQCHyWTij3/8I0OHDsXBwYHw8HCefPJJ60QIA8WpU6d4/vnnKSgowN7RifHX3cKERbfhFz5cApPoMbPZTH11JfXVVdbb6qurqK+ubLeOlxDd5erjR/TsBUxbsgLPoBCampp488032b59u9aliUFkwoQJABypqRlw5wWi7zhSWwvAyJEjZZrxQaZftTQ9/fTTvP7667z77ruMGjWKffv2cffdd+Pq6sqDDz6odXm94tChQ6xcuZKmpiacPbwYO/96DM4uWpclBoDG2mq2f/RWu9sSPl8JwLQl9+DgIldmxcUxODkzZv4iju3YRO7xw3z++eeUlJSwaNEiWSRXXHJjxozhyy+/pLS5mYKmJvztZeF20bvMqsrRtq55lpAuBo9+FZp27drFokWLuPrqqwEIDQ3lo48+IjExUePKekdiYiIffvghqqriGRRC7Nyr0dvJQV8I0X/odDaMnDYXBxdX0vfuZMuWLVRWVrJ8+XKtSxMDnIODA9HR0Rw4cICjNTUSmkSvO9XQQI3JhKOjI6NGjdK6HHGZ9atLf5MnT2bjxo2kpqYCkJyczI4dO1iwYEGnj2lsbKSqqqrdT1+1YcMGVFUlYNgoxsxfJIFJCNEvKYpC2JgJRM9eCIpCUlISxcXFWpclBoHx48cDrbObmaSL3gVNmjSJ3//+90yaNAmAmrZJp0THLK1MY8aMQS+TjQw6/So0/fa3v+W2224jKioKW1tbxowZw8MPP8wdd9zR6WOeeuopXF1drT99eUYnywws/pFRMnZJCNHv+Uf8OA5TuueJy2H48OG4uLhQbzaTXV+vdTl93qxZs/D19WXWrFkAVLW0aFxR39VkNpNWVwf8GM7F4NKvvsU+/fRTPvjgAz788EMOHDjAu+++yz//+U/efffdTh/zu9/9jsrKSutPTk7OZay4exwcHABoaWrUuBIhhLh4ZrMJs6n1JMwgSySIy8DGxoaxY8cCP7YKiM5t3ryZwsJCNm/eDIBRWk86lV5XR7Oq4uXlRWhoqNblCA30q0/H448/bm1tAoiOjubkyZM89dRTLFu2rMPH2NvbY99P+jVbTiqaGxs0rkQIIS5ec+OPF4AkNInLZcKECWzdupX0+noaTCYMNtJzozMJCQkkJCRY/+8sv6tOHWkL4ePGjZO1mQapftXSVFdXd04XDxsbmwEzXbKnpycAaXt2UJZ3WuNqhBCi5xrrajm47hsA3NzcsJGTMXGZBAYG4u/vj0lVOdHWnUqIi1HV0sLJhtYL2tI1b/DqV6Hp2muv5W9/+xvff/892dnZfPXVVzz33HPccMMNWpfWK6666iqCg4Npbmxg/w9fcPpYitYlCSFEt1WVFLHnq4+oLMzHwcHhvONOhehtiqK0W7NJiIt1rG0/Cg8Px8vLS+NqhFb6VWh6+eWXWbx4Mb/85S8ZMWIEjz32GD/72c948skntS6tVxiNRh588EHGjh2LajZzdPtGju3cPGBa0oQQA19BZip7v/mEhtpqfHx8eOSRRxg2bJjWZYlBZty4ceh0OvIaGylrbta6HNGPqapqDd+yNtPg1q/GNLm4uPDCCy/wwgsvaF3KJWNnZ8fSpUvx9/fn+++/J+fIQWrKSxl+xXSMXj5alyeEEB1qqq8jK3kfJ1P2AzBixAiWLl2Ko6OjxpWJwchoNBIVFcXRo0c5UlPDNHd3rUsS/VR+YyNlLS3Y2toSFxendTlCQ/0qNA0WiqIwb948/P39WblyJeV5Oez+8gM8g0IIjYnHI3CIDEIUQvQJdZUVZB/aT96JI5jb1niZOXMmixYtkmnGhaYmTpxoDU1T3NzQyfem6IHDba1McXFxMqHNICehqQ+Ljo7mscceY82aNSQlJVF6+iSlp0/i4ulDaOw4fMMi5aRECKGJyqICspP3UZidDm2LiA4ZMoR58+YRHR2tcXVCwOjRo3F0dKSmro6T9fUMlVZP0U3NZjPHa2uB1hAuBjcJTX2cr68vy5Yt45prrmHLli3s3r2b6tIiDm36gbS9RkKjxxIwfDR6W1utSxVCDHCqqlKSk0128j7K83+c4XPkyJHMnj2biIgIaQUXfYZer2fcuHFs27aNwzU1EppEt6XV1dGkqnh6ehIeHq51OUJjEpr6CU9PT2666Sbmz5/Pjh072Lp1K7XVVRzftYWM/bsJjBqNf+QIXDxkVhchRO9qrK+jMCOV08dSqCkvBUCn0xEfH8/s2bMJCAjQuEIhOjZx4kS2bdtGel2drNkkuu3wGRNASM8eIaGpn3FycuKqq65i1qxZJCYmsmnTJkpLS8lO3kd28j6cPbzwjxiOX3gUDi5GrcsVQvRTLU1NFGWnk59xgrLTJ1HbuuDZ29szefJkZsyYgbsMrhd9XFBQEAEBAeTl5XG8tpY4o3wviq6pamnhlKzNJM4goamfsrOzY+rUqUyePJlDhw6xd+9ejh49Sk1ZCWmJJaQl7sTNNwD/yCh8w4ZhZ3DQumQhRB9nNpkoycmmIP04RSczMZtarNuGDBlCfHw8EyZMkBnxRL8yYcIEVq1axREJTaIbjra1MkVERODp6alxNaIvkNDUz+l0OmJjY4mNjaWuro7k5GT2799Peno6FYV5VBTmcXznFjyDQ/CPiMI7JFzGPwkhrFRVpTw/l4L04xRkpdLS2Gjd5u3tTXx8PPHx8fj4yJIHon+Kj4/nm2++aZ06urkZD/kOFBcgazOJjkhoGkAcHR2ZNGkSkyZNoqKiggMHDrB//35Onz5NyaksSk5lodPr8QkJx3doJJ7BoRKghBiEVFWlojCPouwMCjJO0FhbY91mNBoZO3Ys8fHxBAcHy8QOot87c82mozU1TJVupeICCpqaKG9pwc7OjtjYWK3LEX2EhKYBys3NjdmzZzN79mwKCwvZv38/+/fvp6SkhIKMExRknEBnY4NnUCi+QyPwHhKGraw/IMSAZTaZKMs/TVFWOkXZ6TTV11m3GQwGYmNjiY+PJzJSljIQA8+4ceM4evQoJ2prmeLmJhcDxHmdaJtmfPTo0bI2k7CS0DQI+Pr6snDhQhYsWMDJkydJTk4mOTmZ0tJSik9mUHwyA0VRcA8Ixic0Ap/QcAxOzlqXLYS4SKaWZkpyTlKUlUbxqSxamn7semcwGBg1ahSxsbGMHDkSW2l1FgPYqFGj0Ov1lLe0UNzcjI+dndYliT5KVVVraIqLi9O2GNGnSGgaRBRFITQ0lNDQUK677jry8vJISUkhOTmZ/Px8ynJPUZZ7iuM7N+Hq649PaAS+oRE4urppXboQoouaGxsoPpVFUVY6JTnZ7SZzcHZ2JiYmhpiYGCIjI9Hr5StADA4Gg4GRI0eSkpJCam2thCbRqYKmJqpNJuzt7RkxYoTW5Yg+RL4xBylFUQgMDCQwMJAFCxZQXFxMSkoKKSkpZGdnU1mYT2VhPml7tuPs4YXv0Ah8hkbi7O4p3RqE6GMa6+sozk6nMCudstwcVNVs3ebh4WENSkOHDpWud2LQiouLIyUlhRO1tTKuSXTK0so0atQo7CRcizNIaBJA6yxZc+bMYc6cOVRUVHDo0CFSUlJIT0+npqyEmrISMvbvxtHVHd+hkfiGReLi6S0BSgiNNNTWUJSVTmFWGuUFudC2jhKAn58fMTExxMbGEhgYKJ9TIWg9CdbpdJS3tFDZ3IyrdEkVHciurwcgJiZG40pEXyOhSZzDzc2NadOmMW3aNGprazl8+DApKSkcO3aMuspysg4mknUwEQcXIz5tAcrV209OzIS4xOqrqyjMSqMoK42Kwvx224KDg4mNjSUmJgZfX1+NKhSi7zIYDISEhJCVlcWphgaiJTSJs9S2tFDS3AxAZGSkxtWIvkZCkzgvJycnJk6cyMSJE2loaODIkSMcPHiQY8eOUV9dxcmU/ZxM2Y+9k3NrC9TQCNx8A1CkC5AQvaKusoLCrDQKs9KoKi5sty00NNS6TpssvijEhQ0bNoysrCxONjQQ7eKidTmijznV0ABAUFAQzs4yIZZoT0KT6DKDwWBd6LKxsZFjx46RnJzMkSNHaKyt4dThJE4dTsLOwRHfsGEEDBuB0ctXWqCE6KaG2hry045RkHGC6tJi6+2KohAeHm5tUXJzc9OuSCH6oWHDhrF27VpO1dejqqp8P4l2TraFpmHDhmlcieiLJDSJHrG3tycuLo64uDiam5s5fvw4ycnJHDp0iIb6OnKOHCTnyEGc3D0JGDaSgMgo7B3lqo0QnTG1tFCUnUFe2lFKT5+0jlHS6XREREQQFxdHdHQ0RqNR40qF6L9CQ0OxsbGhzmSisqUFN+miJ85Q0Ni6LEN4eLjGlYi+SEKTuGi2trZER0cTHR1NS0sLqamp7N27l0OHDlFbXkranu2kJe7AKyiUgOEj8R4Sho1MdSwEqqpSWZRPXupRCjJS262jFBYWxvjx44mNjcXJyUnDKoUYOPR6PT4+Pq3LbDQ3S2gSVmZVpaxtPJO/v7/G1Yi+SM5cRa/S6/WMHDmSkSNHUldXx8GDB0lMTCQrK4uSnNYfvZ09fhHDCRw2CqO3dN8Tg09DTTV5acfISz1KXWW59XZ3d3cmTJjA+PHj8fb21rBCIQYuPz8/8vPzKW1uJkzrYkSfUdHSghmws7PDXaakFx2Q0CQuGUdHRyZPnszkyZMpKioiMTGRvXv3UlFRwemjKZw+moKTmwfBo2IJHD5aWp/EgKaqKmW5p8hO2d/a/a6NnZ0dsbGxTJgwgYiICFlHSYhLzDK7ZGlbq4IQAKVNTQD4+PjIcVh0SM5SxWXh4+PDNddcw8KFC0lLS2PPnj2kpKRQW1HG8Z2byUpKJDRmHEEjo7HRS3cJMXCoqkpJThaZB/ZQWVRgvT08PJwJEyYQFxeHwWDQsEIhBhdLaKqQ0CTOUNHSArSerwjREQlN4rLS6XQMHz6c4cOH09DQwN69e9mwYQMVFRWc2L2VzIOJhMbEEzwyFr2sxC36MVVVKcrOIDNpD9UlRUDr+L/Jkyczffp0vLy8NK5QiMHJcpGi6YwFoYVoMpsBcHBw0LgS0Vf1ODQVFxfz9NNP88MPP5CdnQ20zkqzcOFCHn/8cVlcUVyQwWBg2rRpTJo0icTERDZs2EBpaSlpiTvITt7HkOgxDBkVh629XIUX/YdqNlOYlUbmgT3UlJcCrV3wpk6dyqxZs2T2OyE0Zm9vD0Bz20myEADNbSHasn8IcbYehaYjR44wZ84cioqKmDhxIjfffDMAqampPPfcc7z33nts3LiR0aNH92qxYmDS6/VMnjyZiRMnsn//ftavX09RUREZ+xI4mbyfoWMmEBo7TiaMEH1eae4pju3YZJ3cwWAwMH36dGbMmCELJQrRR9i19WJolpYmcQbL/mAnvVxEJ3oUmu677z5MJhN79uxh/Pjx7bYlJiaycOFCHnjgATZv3twrRYrBwcbGhgkTJjBu3DgOHjzI2rVrKSgoIC1xB+X5uUTPmo+tjP0QfZCqqmQlJZK+bxfQOgnKjBkzmD59Oo6OjhpXJ4Q4k+WkuEVCkzhDS1vLo61MQy860aPQlJiYyO9///tzAhPAhAkTeOihh3jqqacuujgxOOl0OsaOHUtcXBy7d+/miy+/pCQni4SvPiBu7jUYvaXrp+g7mhsbOLR5DSWnsgCYOHEiN954o0zuIEQf1dDQAICt9F4QZ7BtmzGvsbHxAvcUg1WPQpOPj895TwgMBoPMPiIumk6nY/LkyQwZMoS33nqL0tJSEr/5hKjJswiMGi3d9YTmqkoKSV7/HfXVVej1ehYvXsykSZO0LksIcR61tbUAONjYaFyJ6Esc2kKTZf8Q4mw9moj+4Ycf5vXXX6egoOCcbXl5ebz++us8/PDDF1ubEAAEBQXx2GOPMXr0aMwmE0e3b+DY9o2o0rVCaKggM5XErz+hvroKT09PfvWrX0lgEqIfsIYmWYtHnMESoiU0ic70qKXJbDbj7OxMREQEN9xwAxEREQCkpaWxatUqIiIiMJvNPPfcc9bHKIrCr371q96pWgw6jo6OrFixgo0bN/L9999z+vghvIYMxSc0XOvSxCDU3NDA0W0bMJtMjB49mjvuuEPGLgnRT9TU1ADS0iTak5YmcSE9Ck2PPfaY9d8ffPDBOdtTUlLa3QckNImLp9PpuPLKK2loaGDDhg2kJe7Aa8hQWblbXHaZBxNpaWrE39+fFStWyD4oRD9SXFwMgIuEJnEGo771lNiyfwhxth6FpqysrN6uQ4gumzt3LgkJCdRWlJF34ghBI6K1LkkMIvXVlZw6fBCARYsWSWASop/Jy8sDwEemlhZn8GrbHyoqKqitrcXJyUnjikRf06PQFBIS0tt1CNFlDg4OzJs3j6+++or0fbvwj4zCRi9ThIrLI33vLlSzicjISKKiorQuRwjRDWaz2RqavCQ0iTPY63S46vVUtrSQl5dHZGSk1iWJPuaiLpHm5uby0Ucf8eKLL3L69GkATCYTZWVlmEymXilQiI5MnToVBwcHmurrqCkr1bocMYiU5p4C4Morr5QZHIXoZ8rLy2lsbMQG8JD1eMRZvNv2idzcXI0rEX1Rj0KTqqo88sgjDB06lDvuuINHHnmE1NRUoHWAZWhoKC+//HKvFirEmfR6vTWYy4K34nKytW/d3yQwCdH/ZGdnA62tTDbyGRZn8bG3B+DkyZMaVyL6oh6FpmeffZYXX3yRxx57jPXr17eb+tnV1ZUbb7yRL774oteKFOJsjY2NNDU1AWDnILOWicvHzrG1n3tVVZXGlQghuis9PR2AILnYJjoQ1Baa0tPTZVkTcY4ehaY33niDpUuX8ve//524uLhztsfExFhbnoS4FCwnrDa2tuhtpV+6uHzs20J6dXW1xpUIIborLS0NgCESmkQHAuztsaH1HKOoqEjrckQf06PQlJOTw+TJkzvd7uTkJFdhxSV16NAhABxcXDWuRAw2DsbWfe7QoUNyJVKIfqSiooLi4mIUpKVJdEyv0xHQtm9YArYQFj0KTT4+PuTk5HS6ff/+/QwZMqTHRQlxPnV1daxfvx6AkOixGlcjBpvgETHobGzIyMjg6NGjWpcjhOgiSw8YHzs77GWpANGJYAlNohM9OmrceOON/Pvf/yYzM9N6m2VQ9Lp163jnnXe4+eabe6dCIc6yceNG6urqcHL3JCByhNbliEHG4OzCkNFjAPj2228xm80aVySE6Irjx48DEOrgoHEloi8LbQtNJ06ckJmgRTs9Ck1//vOf8ff3Jy4ujqVLl6IoCk8//TRTp05lwYIFxMTE8Pvf/763axWCiooKtm7dCkDk+CkocrVQaGBo3Hj0dvbk5+ezd+9ercsRQlyA2Wy2hqahEprEefjZ22PQ6aivr+fUqVNalyP6kB6dcbq6urJ7925+/etfk5ubi8FgYOvWrVRUVPDEE0+wfft2HB1lRjPRu8xmM++//z7Nzc24+QbgHRKmdUlikLK1NzA0bjwAX331FaWlslaYEH3Z6dOnqa2txU5R8G+bIU2IjugUhZC21qZjx45pXI3oS3p8md7BwYE//OEPHDx4kNraWurr6zl8+DD/93//h4NcxRGXwPr160lLS8NGb8uoGfNknRyhqZCYsbj6+FFfX8/KlSulG4cQfZillWmIg4OszyQuyNKF07LfCAEXEZos8vPzSU5Opra2tjfqEaJD6enprF69GoARU2fj5OaucUVisNPpbIiZsxC9nT3Z2dn88MMPWpckhOiEZVB/iMyaJ7ogpC005eTk0NDQoHE1oq/ocWj6+uuviYqKIigoiLFjx7Jnzx4ASkpKGDNmDKtWreqtGsUgV1tby8qVK1FVlYBhIwkYNlLrkoQAWqe8Hzl9LgAbNmyQq5JC9EHNzc1kZWUBsj6T6BqjXo+bXo/ZbCYjI0PrckQf0aPQ9O2333LjjTfi5eXFE0880W6tEi8vLwIDA3n77bd7rUgxeKmqyieffEJlZSWOru5ETZmldUlCtOMXNoygETEAfPDBB9LqLkQfk52dTXNzM042NnjY2mpdjugnLAHbMlW9ED0KTX/5y1+YPn06O3bs4L777jtn+6RJk0hKSrro4oTYt28fycnJKDodMXMWoLe107okIc4xfNJ0nNw8qKqq4tNPP5VFb4XoQ9LT04HWk2AZCyu6aois1yTO0qPQdPjwYW655ZZOt/v6+lJUVNTjooQAKCsr4/PPPwcgPH4SRi9fjSsSomM2eluiZ81H0ek4ePAg+/bt07okIUQby7TRATJrnuiGgLbQlJ+fT3Nzs8bViL6gR6HJ0dHxvF1QMjMz8fT07HFRQqiqygcffEBDQwNuvv6Exo7TuiQhzsvo7Uv42CsA+PzzzykvL9e4IiEEtE43DuBrJz0VRNe52NjgoNNhNpvJz8/XuhzRB/QoNM2aNYt3332XlpaWc7YVFBTwxhtvMG/evIsuTgxex48fJz09HRu9ntGz5qOTRWxFPxAaNx5XH38aGhrYuHGj1uUIMehVVVVRVVUFgJeEJtENiqLg07bP5ObmalyN6At6dCb6t7/9jdOnTzN+/Hj+85//oCgKa9eu5Q9/+APR0dGoqsoTTzzR27WKQWTTpk0ABI2IwdHopm0xQnSRTqcjcsIUAHbv3i2TQgihMcvJrodej51cfBPdZAlNltZKMbj16AgyfPhwduzYgaenJ3/84x9RVZVnn32Wv//970RHR7N9+3ZCQ0N7uVQxWJw+fZrU1FQURWHI6DFalyNEt7j7B+Hi5UNzczM7duzQuhwhBrXi4mIAPKWVSfSAZb+x7EdicOvxZZdRo0axYcMGSkpK2LNnDwkJCRQWFrJp0yZGjBjRmzW2ExoaiqIo5/x0NIuf6J8srUy+YcNwcDFqXI0Q3aMoCqEx8QBs27ZNBhALoaHq6moAnGxsNK5E9EeW/cayH4nBTX+xT+Du7s748eN7o5Yu2bt3LyaTyfr/w4cPc+WVV3LzzTdfthrEpXXixAkAgkfGaFyJED3jGxbJ8V1bqKmpITc3V1rehdCIhCZxMSz7jWVcnBjcuhSaVq5c2aMnX7p0aY8edz7e3t7t/v+Pf/yD8PBwZsyY0euvJS4/s9lsHQfi6OqucTVC9IxOZ4ODi5Hmhnpqamq0LkeIQctysiuhSfSEU9s4uNraWsxms0xKNch1KTQtX76820+sKMolCU1nampq4v333+eRRx7pdMG6xsZGGhsbrf+XqwV9W11dnXVhUNu2NRJE75s0aRKzZs1i8+bNJCQk0FhXi4OLq9ZlDSh2BkcACU1CaKiurg4Ag5zsih4wtIVtVVWpr6/HyclJ44qElroUmrKysi51HT2yatUqKioqzhvqnnrqKf785z9fvqLERbF0pbC1N6DTyZXBS2XWrFn4+voya9YsEhISqK+uws03QOuyBhQ7BwdA+sILoSVLy4CqcR2if7JcxAWwkdbKQa9LoSkkJORS19Ej//vf/1iwYAEBAZ2f7P3ud7/jkUcesf6/qqqK4ODgy1Ge6AHLAcpkasHU0oKN/qKH3YkObN682drSBMiEG5dAS1OT1iUIMehZTnTNqsQm0X3mM/4tXfNEr5yRNjU1sWfPHvLz8xk+fDixsbG98bTndfLkSTZs2MCXX3553vvZ29tjb29/yesRvcPPzw9XV1cqKyspyzuF95AwrUsakBISEkhISLD+395Ruhz0JlNLCyWnswGIiorSthghBjFLaDJJaBI9cOZ+o5eLuINel2Pz2rVrueeeeygpKWl3+/Hjxxk9ejQzZ85kyZIljB07lsWLF9PS0tLrxZ7p7bffxsfHh6uvvvqSvo64vHQ6HTExrbPmFWVlaFyNED1Tevok5pYWPDw8CAoK0rocIQYty4lui4QmKxe9np8EBrL8jF46ywMC+ElgIC4SDNqx7DeKokhLk+h6aHrrrbdITk7Gy8ur3e133HEH6enpLF26lJdeeon58+fz1Vdf8fLLL/d6sRZms5m3336bZcuWSfIfgKKjowEoOpmB2Wy6wL2F6HsKs9KA1n25s0lqhBCXntHY2vW4xiTfJRY6RcHV1hbjGedPRr0eV1tbdHK8asey37i6ykRJohuhad++fcydO7fdbUlJSSQlJXHHHXfw9ttvc9999/H9998zdepUPvjgg14v1mLDhg2cOnWKe+6555K9htBOREQEzs7ONDfUczLlgNblCNEtVSVFFGS0rjV2OboqCyE65+npCUDlJe79IgamyrbFyS37kRjcuhyaCgoKiIiIaHfbmjVrUBTlnNnrrr/+eusCpZfCvHnzUFWVYcOGXbLXENqxsbFh0aJFAGTsT6C2olzjioToGrPZzJFt61HNZuLi4ggPD9e6JCEGNQlN4mJY9hsPDw+NKxF9QZdDk7Ozs3W9A4sdO3ag0+mYOHFiu9vd3NwwSVO4uAjjx48nKioKs8nUehIq/dFFP3AyZT/VJUU4Ojpy0003aV2OEIOeJTRVtLUYCNEdFW2hSVqaBHQjNI0YMYKvv/7a+v/y8nK2bdvG5MmTcXZ2bnffnJwc/Pz8eq9KMegoisItt9yCnZ0dFQW55Bw5qHVJQpxXbUUZGftbZyS8/vrrrWMphBDa8fHxQVEU6sxmaqS1SXRTUdvSEb6+vhpXIvqCLoemRx99lC1btrBgwQKefPJJrrrqKurq6vjlL395zn3XrFnDmDFjerVQMfh4enpy7bXXAnBi9zbKC3I1rkiIjjU3NpC09hvMJhPDhw9nwoQJWpckhKB12RHLRdwCWTtNdEOL2Uxx2z7TV9crFZdXl0PTtddeyzPPPENCQgJPPPEER44c4Y9//CO33npru/vt3r2b3bt3y1TgoldMmzaNuLg4VLOZg+u+pb66SuuShGhHNZtJ2fgDdZXluLm5ceedd8qMeUL0IUOGDAGgoLFR40pEf1Lc3IyZ1uEpMqZJQDdCE8Bjjz1GaWkp+fn51NTU8Kc//emc+8TGxlJcXMyyZct6q0YxiCmKwu23305QUBDNDfUcXPcNLdI3XfQhqXu2U3r6JHZ2dvzkJz+RbnlC9DGWVoJ8CU2iGyz7y5AhQ+RCmAC6GZqgdWYzX1/fTncgBwcHPD09ratwC3Gx7O3tWbFiBc7OzlSXFnN4yxqZGEL0CbmpRzh5qHVa/DvuuEMWshWiDwoNDQUgr7ERk3x3iC463dAA/Lj/CCHLG4t+wcPDg3vvvRcbGxuKstLJTtmvdUlikKsqKeTY9o0AXHXVVcTFxWlbkBCiQ/7+/jg6OtKsqhRKa5PoAlVVyWkLTWcvtyMGLwlNot8YOnSodRrntMQdlOae0rgiMVg1NzRwcP13mE0mRo0axfz587UuSQjRCZ1OZz3xtZwIC3E+Jc3N1JvN2NnZySQQwkpCk+hXJk+e3DozmaqSsvEHGmqqtS5JDDKqqpKyeTUN1VV4enpy5513otPJoVSIviwyMhKAUxKaRBdYwvXQoUPR6/UaVyP6CvmmF/2KoijcfPPNBAYG0txQT/KG71HNZq3LEoNIVlIipTnZ6G1tWbFiBY6OjlqXJIS4AEtLU66MaxJdIF3zREe6FJrGjh3LmjVrrP9fuXIl2dnZl6omIc7Lzs6Oe+65B4PBQGVRPgWZqVqXJAaJxrpaMpMSAbj1llsIDAzUuCIhRFf4+fnh5OREi6rK1OPivFRVtU4CYWmhFAK6GJpSUlIoKSmx/v/uu+9m165dl6woIS7Ey8uL2bNnA5B5YI+0NonLIjtlP2ZTCyEhIYwfP17rcoQQXaTT6awnwDKuSZzPmeOZLGt8CQFdDE0hISFs2LABk8kEtKZwmbNeaG369Ok4ODhQW1FGYVaa1uWIAa6xvo6co8lA62x5cgwUon+xdLWScU3ifCyhOiwsTJbPEe10KTT9/Oc/Z+XKlRgMBoxGI4qisGLFCoxGY6c/rq6ul7p2Mcg5ODgwc+ZMADIO7JG1m8QlderQAcwtLQQHBzNy5EityxFCdJMlNOU1NmKW7wvRCRnPJDrTpSlBHn/8cWJjY9m8eTOFhYW8++67jB8/nrCwsEtdnxDnNX36dFavXk1teSnNjQ3YGRy0LkkMUOX5p4HWfU5amYTof3x9fTEYDDQ0NFDa3Iy3nZ3WJYk+yDLmTRa1FWfr8jyK8+bNY968eQC88847/OxnP+P222+/ZIUJ0RX29vbWfyvIiay49M7c54QQ/YdOpyM4OJi0tDQKGhslNIlz1JpMVJtMKIpCcHCw1uWIPqZHk8+bZdC96CPadcmTzCQupbbWJekGKkT/ZQ1NTU1Ea12M6HMK21qZfHx8MBgMGlcj+pqLWrFr69atfP/995w8eRJonTDi6quvZsaMGb1SnBAXcmaAly5T4lJSlNYhoBKahOi/LLOhFcq046IDhU1NANLKJDrUo9DU1NTEkiVLWLVqFaqq4ubmBkBFRQX/+te/uOGGG/joo4+wtbXtzVqFOEdCQgIAejt7dLJqt7iE7B2dANi1axdxcXES0oXoh/z8/ACoaGnRuBLRF5U3NwM/7idCnKlLs+ed7c9//jNfffUVjz76KPn5+ZSVlVFWVkZBQQGPPfYYX375JX/5y196u1Yh2ikqKuLbb78FIHLCFHQ6mRpUXDrh8ZPQ6fWkpqbKOnVC9FMeHh4ANJjNNMpQA3GWqrYwbdlPhDhTj0LThx9+yLJly3jmmWfw9fW13u7j48PTTz/N0qVLee+993qtSCHOZjab+fDDD2lubsYjcAhBI2K0LkkMcE5u7kSOnwLAqlWrKC0t1bgiIUR32dvb4+TU2mpcJa1N4iwSmsT59Cg05efnM3HixE63T5w4kYKCgh4XJcT5mM1mvvvuO7KysrCxtWPU9Culq5S4LIaMHoObXyBNTU2899571NTUaF2SEKKb3N3dAQlNoj2zqlJtMgESmkTHehSagoKC2LJlS6fbt27dSlBQUE9rEqJT5eXlvPrqq2zcuBGA4ZOm4+Bi1LgqMVgoisLomfOw0duSlZXF008/zYkTJ7QuSwjRDS4uLgDUtZ0gCwHQaDZjmebH2dlZ01pE39Sj0LRs2TI+/fRTfv7zn3PixAlMJhNms5kTJ07wi1/8gs8++4zly5f3cqlisEtKSuLpp58mPT0dG70to2bMIyhKJo0Vl5ej0Y3x192Ck5sHVVVVvPbaa6xatYoWuWotRL+gb5s0SEY0iTOZ2mZG1el02NjIGGlxrh5NN/b73/+ejIwM/vvf//LGG2+g07VmL7PZjKqqLFu2jN///ve9WqgYvBobG/niiy/Ys2cPAEZvX2JmL8TR1U3bwsSgZfTy4Yobb+fE7m2cPprC5s2bSU1NZenSpTLrkhB9nCU0mWT5AHEGy/4ggUl0pkehycbGhnfeeYdHHnmEH374od06TQsXLiQmRgbli4tnMplISkpi9erVlJSUADB0zATC46+QmfKE5mz0toycOgevoFCObFtPbm4u//znP5kzZw7Tp0+3DjYXQvQtEppERyydNfWyfInoxEXtGTExMRKQRK9raWlh7969bNiwwRqWDE4ujJ49Hw9/GSsn+haf0HBcfXw5vGUdpadPsmbNGjZv3szUqVOZOXMmRqOMuROiL5LIJM4kC5eLC5E4LfqMpqYmEhIS2LRpExUVFQDY2hsIiR5L8Og4bO3stS1QiE7YOzozdsENFGamknVwL9WlxWzcuJFt27ZxxRVXMHv2bJmNSYg+or6+HgB7XY+GdYsByrI/NDQ0YDabrUNPhLCQ0CQ0V19fz44dO9iyZYt1Cmd7RydCY8YROCIava2txhUKcWGKouAXPhzfsGGUnMoiMymRyqJ8tm/fzs6dOxk/fjxz587Fx8dH61KFGNTq6uoAMMhJsTiDZX9QVZWGhgYcHR01rkj0NRKahGby8vLYvXs3e/bsoaGhAQAHFyND48YTMGwkOhvZPUX/oygK3iFheA0ZSnn+aTKT9lCWm8OePXtITEwkOjqaK664gqioKBlwLIQGJDSJjuh1OvSKQouqUl9fL6FJnEPOSsVlVV9fz/79+9mzZw+nTp2y3u7k5sHQMRPwCx8uTeJiQFAUBY+AYDwCgqkozCcrKZHiU5mkpKSQkpKCq6srEyZMYOLEiXh7e2tdrhCDhoQm0RmDTkeNyURNTQ2enp5alyP6GAlN4pIzm81kZGSwe/dukpOTaW5uBkDR6fAeEkZg1Gi8gkNRFEXjSoW4NNx8/RkzfxE1ZSWcPn6Y/LRjVFZWsn79etavX094eDhXXHEFsbGx2NvL2D0hLpWmpiaqqqoAMMosaeIsRr2eGpOJsrIyQkJCtC5H9DE9OmL84he/4K677mLy5Mm9XY8YQCoqKkhMTGT37t2UlpZab3dy9yBw+GgCIkdg5yDN32LwcPbwImryTIZNnErRyUzyThyh5PRJMjIyyMjI4PPPPyc+Pp6JEycSEhIiFxKE6GVlZWUA2CmKtDSJc7jq9eQ1NrY7ZxHCokeh6cMPP+S///0voaGh3Hnnndx5551ERkb2dm2iH2poaCAlJYX9+/dz4sQJ6xSeNrZ2+IcPJyBqFK7efnIyKAY1nY0ev7Bh+IUNo6GmmrzUo+SeOEJ9dSW7du1i165d+Pn5ER8fT3x8vHQTEaKXWJaxcLO1le8hcQ63ttZHCU2iIz0KTUVFRXzzzTe8//77/OMf/+Cvf/0r48aNY+nSpdx66614eXn1dp2iD2tububo0aMcOHCAI0eOWLvfAbj7BxI4fDQ+QyNlFjwhOmBwdiFs7ESGjplAef5pco8fpjArjYKCAr7//nu+//57QkNDiY+PJy4uTtZ9EuIiWEKTq3TNEx1wbTtPsewnQpypR0cNe3t7br75Zm6++WbKy8v59NNP+eCDD3jwwQd55JFHuPLKK1m6dCnXXXcdBoOht2sWfYDZbCYtLY39+/eTnJxsnf0OwNHVHf+IKPwjonB0ddOuSCH6kTMnjohqnEVhVjoFGccpy80hOzub7OxsvvzyS4YPH058fDwxMTFyfBWim4qLiwFwl4t4ogPubWG6qKhI40pEX3TRl1rc3d352c9+xs9+9jNOnTrF448/zmeffcbq1atxcXFh8eLFPPjgg8TExPRGvUJDqqpy8uRJ9u/fT1JSEtXV1dZt9k7O+IUPxz8iChdPb+n2IMRFsLU3EBQ1mqCo0TTU1lCYmUp++gmqigs4fvw4x48f55NPPmHUqFHEx8czcuRIbOUkUIgLKiwsBMBDPi+iA5b9oqKigsbGRpmYR7TTK+3TOTk5fPDBB3zwwQccOXIET09Pbr31Vuzs7Hj//fd55513ePnll/nFL37RGy8nLrOioiL27dvHvn372vXztbU34BsWiV9EFO5+gRKUhLgEDE7OhESPJSR6LHWVFeRnHKcg/QS1FWUkJyeTnJyMwWAgNjaW8ePHEx4eLtP2C9EJSwuCp4Qm0QEHGxscdDrqzWaKiooIDg7WuiTRh/Q4NFVUVFi75e3cuRO9Xs/VV1/Nk08+ydVXX2296vnUU0+xZMkS/vKXv0ho6keqq6tJSkpi79697dZT0un1+IRG4B8xHM/AEHSyOKcQl42jqxvhY68gbMxEqkuLKUg/Tn7GCRpqa9izZw979uzBzc2N+Ph4xo0bR0BAgNYlC9FnNDQ0UFlZCfzYDUuIs3na2nK6sZHCwkIJTaKdHh01brjhBlavXk1TUxMTJ07k5Zdf5rbbbsPd3f2c+9rb27N48WJWrVp1sbWKS6ypqYlDhw6xb98+jh8/jtlsBlrHWngGheIfGYV3SLhM6CCExhRFwejlg9HLh8iJ0ygvyCU/7RiFmWlUVFSwceNGNm7cSEBAAOPGjSM+Ph43NzetyxZCU5aeEg46HQa54Cc64dYWmmQGPXG2HoWmpKQkHn/8cZYuXdqlqcavvPJKNm/e3JOXEpeY2WwmNTWVffv2kZKSQmNjo3Wb0dsX/8gR+IUNw97RScMqhRCdURQFD/8gPPyDiJo8i5KcLPLTjlN8KpO8vDy++eYbvv32WyIiIhg3bhxxcXEygYQYlCxrNMmituJ8LPuHZX8RwqJHR47s7Oxu3d/b25sZM2b05KXEJVJZWcnOnTtJSEiwro4O4OBixD9yBP4RUTi5eWhYoRCiu2z0enyHRuI7NJLmhgYKs1LJSztORUEuaWlppKWl8fnnnxMbG8v06dNlxXsxqJSXlwMSmsT5SWgSnenRkcPGxob333+fJUuWdLj9k08+4fbbb8dkMl1UcaJ3qapKZmYm27dvJzk52dr9ztbegG/4MAIiRuDq6y8TOggxANgaDASNiCFoRAz11ZXkp58gP+0YtRVl1oldhgwZwvTp0xkzZgx6OZEUA5y0NImuMLZ13bSEbCEsenTkUFUVVVU73W4ymeTEuw9pamriwIEDbNu2jdzcXOvtbn6BDBkVi09ohEzoIMQA5uDiStiYCQyNG09VcSGnjhykICOVU6dO8f7777Nq1SomT57MlClTZOyTGLAsy2Q4y/edOA/ntlB95rIqQsBFzJ7XWSiqqqpi7dq1eHl59bgo0TvKysrYsWMHCQkJ1NXVAaCzscE/YgTBo2IxevloXKEQ4nJSFAVXHz+ifeYz7Irp5B47RM6xFGpqali3bh0bNmwgJiaG6dOnExYWJhe/xIDS0tICgF72a3Eelv1DekuJs3U5NP35z3/mL3/5C9D6xXvnnXdy5513dnhfVVV58MEHe6dC0W2VlZV8/fXXHDhwwNoiaHAxEjwylqDho7GVQeBCDHr2Do6EjZ1IaNw4irIzyDlykPL8XA4ePMjBgwcJCgripptuIiwsTOtShegVltBkI6FJnIdl/2hpaUFVVbl4JKy6HJomTJjAL3/5S1RV5bXXXuPKK69k2LBh7e6jKApOTk7Ex8dz44039nqx4vzMZjM7d+7ku+++o6GhAQCPwCEMGRWH95ChKLLgpRDiLDqdDX5hw/ALG0Z1aTGnjhwkP+04p0+f5sUXX2TSpElce+21ODnJDJqif7O0HEhoEudj6bypqipmsxkb6c4p2nQ5NC1YsIAFCxYAUFtby89//nMmTpx4yQoT3XP69Gk++eQT60K0Rm9fRk6dg9HbV+PKhBD9hYunN6OmX0nkhKmk7dlO7okjJCQkcOjQIa6//nrGjRsnV11Fv2WZ/EiI8znzGCehSZypR2Oa3n777d6uQ/RQQ0MDq1evZuvWraiqit7WjogJUwgeESMtS0KIHrEzODBqxjwCho3k6I6N1JSX8f7777Nnzx5uvvlmfH3lYozof4xGIwA1bd30hOhIddv+4ejoiK2trcbViL6kS6Fp5cqVANx1110oimL9/4UsXbq055WJCyopKeHll1+moqICAN+wYQyfNAODk7O2hQkhBgR3/yAm3Xgn2Sn7yTywm7S0NJ5++mluv/12xo0bp3V5QnSLh0fr2oNVEprEeVS27R+W/UUIiy6FpuXLl6MoCrfddht2dnYsX778go9RFEVC0yWkqioff/wxFRUVGFyMjJw6B6/gUK3LEkIMMDobG8LGTMAvfBjHdm6mNCebTz/9lIiICJmeXPQrlpPgSglN4jyqJDSJTnQpNGVlZQFgZ2fX7v9ayM3N5Te/+Q2rV6+mrq6OiIgI3n777UF31TMxMZG0tDR0ej3jrr4JR6Ob1iUJIQYwR6MbY69aROI3n1BZVMAXX3zBihUrtC5LiC7z9PQEoFxCkziP8uZmANzd3TWuRPQ1XQpNISEh5/3/5VJeXs6UKVOYNWsWq1evxtvbm7S0tEG3Y9fU1LBq1SoAwsdeIYFJCHFZKDodI6fNZfdXH5KSksKhQ4eIjo7WuiwhuiQoKAgbGxsqW1ooa27GQ8ariLOoqkpWfT0AQ4cO1bga0df0eHFbLTz99NP8//buPDyq8m4f+H1mJplksu/7AlmAkLBEqaBQZY2yiPhTKoqIqIhihVpr69XWlqu+0ta+rW3fFrFYrbZKq0XrhlJFEQGVfQtLEhKykH2SzExmnzm/P5IzMiSZJJBkZs7cn+vKVTLnOWe+sYSZe57nfJ+MjAy3RhSB+Jf6nXfegdFoRHhsPLImFHu7HCIKIBFxCcgqKkbV0QN44403MG7cOKhUfvVSQgEqNDQUeXl5OH36NMo6O3ENl5fSJVptNrTZ7VCpVBg3bpy3yyEfM6BXulmzZg36woIg4JNPPhn0eZ688847KCkpwe23345du3YhLS0NDz/8MB544IE+z7FYLLBYLK7vdTrdkNbkDc3NzQCAhMxRUCjYCpOIRlZidg6qjh6ATqeD2WxGeDibz5B/mDBhQldoMhoZmqiHMqMRAJCfn4+QkBAvV0O+ZkA9qZ1OJ0RRHNTXcOyHcO7cOWzatAl5eXn46KOP8NBDD+HRRx/F3/72tz7P2bhxI6KiolxfGRkZQ17XSJsxYwYAoPbUcdhtVi9XQ0SB5vyxQwCA4uJiBibyK0VFRRAEAQ1WKzq6710hArqW5p3t7AQATJw40cvVkC8a0EzTZ599NsxlDIzT6cTVV1+NZ555BgAwefJknDhxAs8//zzuueeeXs958skn8dhjj7m+1+l0fh+cJk2ahPfffx8tLS2oPXUc2ROu8nZJRBQgOtu1aKwsAwDMmTPHy9UQDU5kZCTy8vJw9uxZfNnRgZL4eG+XRD6iwmRCs82GoKAgFBYWersc8kF+tftpSkoKCgoK3B4bN24cqqur+zxHrVYjMjLS7cvfKRQK15uVqqMHoGtp9HJFRBQIrGYTTu/9DEDXJ/apqaneLYjoMsyfPx8AcMJgQKuVqzUIcIoidre1AQCuv/56zqBTr6747l29Xo+Ojo5el+NlZmZe6eXdXHfddThz5ozbY2fPnvVaNz9vmjJlCj7++GO0tLTgy7deR1ZRMXKumgYVuwFRH9RhEZixbBXsNjv2vdm1QfW021ZAFaSCOizCy9WRLxNFEQ3lp3F63y7YzCYoFArMmzfP22URXZZRo0ahqKgIx48fxxft7VicmOjtksjLSg0GtNps0Gg0mD17trfLIR912aFp06ZN+O1vf4tz5871OcbhcFzu5Xv1ve99D9deey2eeeYZLF26FF9//TVeeOEFvPDCC0P6PP5ApVJh3bp12LZtGw4fPozzxw6i8VwZxk2fhYTMwOsoSP1TKBQIjYiC/aJ1/KERkQza5JFR145TX+xEa+15AEBycjLuuOOOIf9QjGgkLViwACdOnECZ0YgLZjNSedN/wLI5ndjT3g6ga8mxRqPxbkHksy5red7zzz+PtWvXIjc3F08//TREUcT69evxox/9CMnJyZg4cSJefPHFoa4VU6ZMwVtvvYXXX38dhYWF+MUvfoHnnnsOd91115A/lz+IjIzEypUrsXr1asTExMBs0OHwh2/j2CcfwGLs9HZ5ROTHnE4nKo8ewN43XkVr7XmoVCosWLAAP/jBDwJyqweSl5SUFHzrW98CAHzQ0gLLMDSvIv+wU6uF3uFAdHS0q9EWUW8ua6bpj3/8I0pKSrB9+3a0trbixz/+MRYsWIBZs2bhiSeewNVXX43W1tahrhUAsHDhQixcuHBYru2vxo8fj9zcXHzwwQfYtWsXGirOoKWmCuljC5E2tghh0YG1+S8RXT6bxYz68tOoKT2KzjYtACA3Nxff+c53kMhlTCQjixcvxtmzZ9HW1oYdLS1YmJAAQRC8XRaNoJMGA44bDBAEAXfddReCg4O9XRL5sMuaaaqoqMCiRYsAAEHdS3us3TdTRkVF4f7778ef//znISqRBkKtVmPJkiV47LHHkJaWBrvVgqpjB7HnXy9j/7v/woWzpXDY2V6ViHoSRRHa+loc37kdu/7+Ak7v+RSdbVpoNBosW7YMjzzyCAMTyU5YWBhWrlwJhUKBM0Yjjur13i6JRlCr1Yr/dn/AX1JSgvz8fC9XRL7usmaaoqKiYLfbAXQtEdNoNKipqXEdj4iIQENDw9BUSIOSmZmJ73//+zhx4gS+/PJLnDp1Cm31dWirr8PpvZ8hJXcs0sYWIjKeb4CIAp3F2IkLZ0tRd+YEjB3trsdTUlIwdepUTJkyBWFhYd4rkGiYZWdn4+abb8bbb7+NT7VapKjVSFKrvV0WDTOb04l3m5thF0Xk5eWhpKTE2yWRH7is0FRYWIijR4+6vp86dSo2bdqE+fPnw+l0YvPmzUzsXqRUKjFx4kRMnDgRbW1t+Prrr/Hll19Cq9WipvQoakqPIjI+EWljC5GcOxZBwXyBIAoUotOJltrzqDt9As3V5yB238sRHByMq666ClOnTkVWVhaXKVHAuOGGG1BeXo4TJ05gW1MT7khORgwb5MiWQxTxn+ZmtNhsiIiIwIoVK6BQ+NUOPOQllxWali9fjueffx4WiwVqtRobNmzAnDlzXN2UgoKC8O9//3tIC6XLExMTg5KSEsydO7drM78vv8SxY8ega2mC7oudOLPvc8RnZiMhazQSMkcjOCTU2yUT0RBzOuzQXqhF8/lzaDpfAUunwXUsKysL06ZNw+TJkxHCDmIUgKT7Wf7whz+gvr4ebzQ0YFlKCiJUV7wrC/kYpyjiveZmVJlMCAoKwqpVq2SxfyeNDEEURXEoLnTu3Dm8++67UCqVmDdvns/ONOl0OkRFRaGjoyNgf1EMBgP279+Pffv2obHxoo1xBQHRiSlIyBqNxOwcaKJi+GmzDNltNux86f8AALPufYQtx2XKajahufocms+fQ2vteTguajWv0WgwZcoUTJ06lRvUEnXT6XT4/e9/j5aWFsSqVPhOSgrClEpvlzVsrE4n/lBdDQB4NDMTwTKfbRFFER+2tuKkwQClUonVq1dj7Nix3i6LfMBAs8GQhSZ/wdD0DVEUUVNTgxMnTuDEiROoq6tzO66JjO6agcoajejkNE5fywRDkzyJoghjRxuaqirQfP4c2pvqgYv+eY+MjMT48eNRWFiIMWPGuJr4ENE3tFotfv/736O9vR2JwcFYmpSEEJkGp0AKTaIo4lOtFof0eigUCqxcuRITJ070dlnkIwaaDTj3HMAEQUBmZiYyMzMxf/58aLVanDx5smvDv7IyGHXtOH/8EM4fPwSVWo34jFFIzBqNuIxs3gdF5AOcTifaG+rQfL5rRsmoa3c7npaWhsLCQhQWFiI9PZ0ffBD1IzY2FmvXrsXvf/97NBkMeKOxEbcmJcl6xknunKKInVotjnR3R7zzzjsZmOiyXFZoUigUA1q25XA4Lufy5CWxsbGYMWMGZsyYAbPZjNOnT+PkyZM4efIkOjs70VB+Gg3lpyEICkQnpyIuLROxaZmITEjimzGiESCKIkz6DrTWVkNbV43WC9WwWyyu40qlEnl5eSgsLMT48eMRGxvrxWqJ/FNiYiIefvhh/PnPf0ajwYDX6+txW1ISojk763fsoogPmptx1miEIAi4/fbbMWXKFG+XRX7qskLTU0891SM0ORwOVFVV4e2338aYMWO4Aa2fCwkJwaRJkzBp0iQ4nU5UVVW5lvE1Njairb4WbfW1wIG9UAUFIyY1A3FpmYhLz+S9UERDyGoyQnuhBq111Witq4ZZr3M7HhYWhvHjx2P8+PEYO3YsmzkQDYG0tDSsW7cOmzZtglarxWvdwSmR7cj9hsXpxH+amlBtNkOpVGL58uUoLi72dlnkxy4rNP385z/v81h9fT2mTp3qs40gaPAUCgVGjx6N0aNH4+abb0ZLSwtOnz6Ns2fPdi3jMxrRfL4CzecrAADqsPCuANU9E6XWcJ8XooFy2G1oq69Da13XbJK+tdntuFKpRHZ2NsaMGYP8/HxkZWVxppdoGCQmJmL9+vV4/vnnceHCBWxtaMAtiYnIDGWXWV/X6XBgW2MjGq1WqNVq3HfffRgzZoy3yyI/NyyNIDZu3IhXX30VpaWlQ33pK8ZGEEPL6XSitrYWZ86cwdmzZ3Hu3DnXxseS8Jg4xHbPQsUkp0MVHOylaglgIwhf43Q6oWtphLa2ayapvbEeotN9aXNqairy8/MxZswY5OTkQM1Pu4lGjMlkwpYtW1BeXg4lgJL4eBSEh3u7rCsm10YQrVYrtjU1ocNuR3h4ONasWYOMjAxvl0U+zKuNIMLCwlBZWTkclyYfo1AoXM0k5s6dC6vVisrKSleIqq2thaGtFYa2VlSfOAxBUCAqMQmxqZmISU1HdFIqlNwLgwKIKIowaFugvVAD7YUatNXXwW61uI2Jjo7GmDFjMGbMGOTl5fEDHiIvCg0NxZo1a/DKK6/g2LFj+KClBa02G6ZHR3Mpuo85ZzTiveZmWEURcXFxWLNmDRITE71dFsnEkL9bPXHiBP7whz9weV6ACg4Odr3ZA7r2hCorK8PZs2dx5swZtLa2or2xHu2N9cDhr6BQKhGVmILY1AzEpqYjKjEFCnYpIhkRRRGd7dpvQtKFWtgsZrcxoaGhyMvLcy25S0hI4JsxIh8SFBSEe++9F++//z4+/vhjfNXRgVarFfMTEmQzQ+PPRFHEQZ0Ou9raIALIycnBqlWrEC6DGUHyHZcVmkaNGtXrC3p7ezs6Ojqg0Wjw9ttvX2ltJAPh4eGYPHkyJk+eDABobW11hajy8nJ0dHS4mkpUHAQUShViklMRk5qB2NQMduYjvyOKIky6DmgvVEN7oRbaCzWwmoxuY4KDg5GTk4O8vDzk5uYiIyODf8+JfJxCocCiRYuQnJyMrVu3otxkwuv19bglKQlRXDHhNQ5RxH9bW3HCYAAATJ06FbfffjtU/P+Ehthl/Y26/vrre4QmQRAQExODnJwc3HHHHWx1S72Ki4tDXFwcpk6dClEU0dzc7ApQZWVlMBgMri5hAKAMCkJMcjpiU9MRm5qBiLgECHxzST7GpNe5ZpK0F2pg6TS4HQ8KCsKoUaOQl5eHvLw8ZGZmQskZVSK/NGXKFCQkJGDLli1o1uvx9wsXsDgxEensXDniOh0OvNvUhFqLBYIg4JZbbun1PSrRUBiWRhC+jI0gfJcoimhoaEBZWRnKyspQXl4Oo9H9E3pVsLo7QLG9+eViI4grd3EbcG1dDUz6DrfjUoc7KSRlZ2fzU08imWlra8OWLVtQW1sLBYCZsbGYFBHhN69J/t4Iot5iwTtNTdA7HAgJCcHKlSsxbtw4b5dFfmhEGkF0dnZCr9cjPj6ebwjoigmCgJSUFKSkpODb3/42nE4nLly44ApRFRUVMJvNaKqqQFNVd3tzTVhXZ77u9uYhYVy/TEPPbrOirb6ua0PZumoYtC1ux6WGKFJIGjVqFILZJZJI1mJiYrBu3Tq8/vrrOHToED7RatFotWJObCxUfhZA/M1xvR4fa7VwiCKSkpJw3333ISkpydtlkcwNOumcP38ezz77LN59913U1tYC6Hqzm56ejqVLl2Lt2rXIysoa8kIp8CgUCqSnpyM9PR0zZ86Ew+FAbW0tzp4962pvbjF2or7sFOrLTgEANFExrgAVm5qOIDWXS9DgOR0OdDTVo7WuBtq6anQ0NUAUnW5jpDbg+fn5yMnJ4aayRAEoODgYK1asQGZmJv7zn//ghMGAZqsVixMTEckPk4ecQxTxqVaLI3o9AKCoqAjLly/nv780Iga1PO/dd9/F8uXLodfrkZ2djQkTJiAiIgJ6vR7Hjh1DVVUVoqKi8Pe//x0LFiwAAPzkJz/B008/PWw/wGBxeZ58SO3NpRBVU1MDt7/OgoDI+ETEpmYgLi0T0clpbG8OLs/rjSiK0Lc2d92TVFeNtvo6OOw2tzFxcXGukJSXl4eIiAgvVUtEvujMmTP429/+hs7OTmgUCixKTESGD7+Z97fleZ0OB95pakJd9/1LN910E+bOncsmOnTFBpoNBhyaTp06heLiYowaNQqbN2/GjBkzeozZvXs31qxZg/Pnz+PAgQPYuHEj/v73v8PhcPRyRe9gaJIvo9GI8vJyV4hqbGx0O65QKhGTnIb4zFGIz8gO2PuhGJq6WM0mtNaeR0t1JVpqz8NmNrkdDw8Pd2sDHhcX56VKichftLa24sUXX0RdXR0UAG6IjcVkH73PyZ9CU73Fgv80NcHQff/S3XffjcLCQm+XRTIx5Pc0PfPMM4iLi8MXX3zRZ2e8GTNmYPfu3ZgwYQKuuuoqWCwWbNy4cfDVE10GjUaDCRMmYMKECQC6WuBfvEdUR0eHqzPfmX27EBoR5QpQsakZnIWSOVEUoW9pQnNNJVpqqtDR1ABc9JmRWq1GTk6OazYpJSWFn2AS0aDExcVh/fr12Lp1Kw4ePIidWi2aeJ/TFTmh1+O/F92/dP/993PDWvKKAb9L3LlzJ+6///5+W4nHxsZi1apVePrpp/HKK69g+fLlV1wk0eWIjo7GlClTMGXKFIiiiKamJpSWlqK0tBQVFRUw6TtQc/IIak4egUKpRGxqBuIzshGfOQqayGhvl09DwGYxd80m1VShpaaqx35JqampKCgowLhx4zBq1Ci2ASeiKxYcHIy7774b6enpeOedd3DCYEBL931OEfxwbsAcoojPtFoc5v1L5CMG/Nvb2tqK7OzsAY2V3nwwMJGvEAQBSUlJSEpKwsyZM2GxWHD27FlXiGpvb3e9scbez6CJinEFqBjeC+U3RFGEQduC5upKtNRUoqOx3u0+N7VajTFjxmDcuHEoKChAdHS094olItkSBAGzZs1Camoq/va3v6HBaMSr3fs5pfFNf7+M3fcv1VosAIAbb7wRJSUlnP0nrxrwO8H4+HhUVlYOaGxlZSWnTsmnqdVqFBUVoaioCKIoor6+HqdOnUJpaSnOnTsHY0cbqjvaUH3iMBQqFRIyRiEpJx/xGaMC9h4gXyWKItobL6DxXBkaK8t6bCyblJSEgoICFBQUYPTo0dwegYhGzNixY/H9738fW7ZsQX19Pf7Z0IB58fEoDOf2GH1ptlrxVmMjdA4H1Go17r77bhQVFXm7LKKBh6YbbrgBL774ItavX+9xiZ5Wq8WLL76IWbNmDUmBRMNNEASkpqYiNTUVs2fPhslkwpkzZ1BaWopTp05Bp9OhsbLrDblCpUJC5igkjWaA8iZPQSk4OBh5eXmuZXds4EBE3hQfH4/vfe97+Mc//oGjR4/iw5YWaG02zIiO9skGEd50zmjEe83NsIoi4uPj8cADDyA5OdnbZREBGET3vNLSUhQXFyM3NxcvvPACrr322h5j9u7diwcffBBlZWU4dOgQCgoKhrzgK8XueTQYoiiipqYGR44cweHDh6HVal3HugLUaCSNzkNC5igoVf4RoPy1e54oiuhorEfDubM9gpI0czhp0iSMHTsWQX7yMxFR4HA6ndi+fTt27NgBAMjTaHBTfLzXutb5Uvc8URRxWK/Hp1otRAC5ublYtWoVwsLCvFYTBY4h755XUFCA1157DStWrMCMGTOQnZ2NiRMnuu3TVFlZidDQULz22ms+GZiIBksQBGRmZiIzMxOLFi1CTU0NDh8+jCNHjkCr1aLx3Fk0njvrtwHK1zEoEZFcKBQKLFiwAImJiXj99ddRZjRC19CAWwK8QYRDFLFTq8XR7oYP11xzDZYuXcql1ORzBrW5LQCcO3cOv/71r/Hee+/hwoULrsdTU1OxaNEiPP7448jJyRnyQocKZ5poKIiiiOrqahw5csQVoCRKVRCSc8YgvaAIUQm+t6zAH2aaLEYD6k6fRO3p4zAb9K7H1Wo1CgsLMXnyZAYlIvJb586dw5YtW9DZ2YlwpRK3JSUhPjh4RGvwhZkmq9OJd5qbUWUyQRAE3HzzzZg5cyaXLdKIGvLNbft6Er1ej4iICL8JIAxNNNQ8BajIhCSkj5uA5JwxPhNOfDU0iaII7YUa1JYeQ9P5CohOJwAGJSKSp9bWVrzwwgtoaGhAiEKBWxMTkTqCnfW8HZpMDge2NTWh3mJBcHAwVqxYwYYP5BUjEpr8EUMTDSdRFFFRUYG9e/fiyJEjcDgcAABVsBqpeeOQXjAB4THebUzga6HJajbhwtlS1J46DmNHm+vxUaNG4brrrsPEiRMRPMKfwBIRjYTOzk688MILqKqqgkoQsDghAaM0mhF5bm+GJr3djjcbG9Fqs0Gj0eDBBx8c8LY2RENtyO9pIqL+CYKA3Nxc5Obm4tZbb8VXX32FPXv2oLW1FdUnj6D65BHEpKQhfdxEJI3KgUIZmL+Coiiio6keNaXH0HjuLJzd4VKtVuPqq6/Gddddh7S0NC9XSUQ0vMLCwvDwww/jpZdewqlTp/BWUxNuio/HOBm3JNfabHijoQF6hwNRUVF4+OGH2SGP/EJgvmMjGgHh4eGYPXs2Zs6ciTNnzmDPnj04ceIE2urr0FZfhzOhGoyaNAXp4yYEzOa5oiiitfY8yg/sha650fV4Wloapk+fjuLiYu72TkQBRa1W44EHHsA//vEPHDx4EO+3tMDidGKSDFfDNFkseKOxESanE4mJiXjooYc8bmND5EsC450akRcpFAqMGzcO48aNQ3t7O/bt24d9+/aho6MDZ/btQtWxg8i5aipS88fLerfztoY6lH29B+0NdQCAoKAgTJ48Gddddx2ysrJ44y8RBSylUonly5cjLCwMn3/+OT7WaqEQBEyIiPB2aUOm2Wp1BaaMjAysWbMG4TKeUSP5YWgiGkHR0dG46aabMG/ePHz99df48MMP0d7ejtLPP0bV0QPIuepaJOfkyypA6FqaUL5/D1pqqgAAKpUK06dPx9y5c/mCSUTUTaFQ4NZbb4VSqcSnn36KHa2tUAoCxsvg30lpSZ4UmNauXYvQ0FBvl0U0KAxNRF6gVCoxbdo0XH311dizZw927NiBzo52HN/5ASqPfI28KdchPnOUX4enznYtyg/sReO5MgBdbwimTp2KkpISREdHe7c4IiIfJAgCFi9eDLvdjt27d+PDlhYoBQFj/XiT13abDf9qaIDR6URaWhoeeughBibySwxNRF4UFBSEG264AVOnTsWuXbuwc+dOGLQtOPzRfxCTmoHC6+chNMK/1rU7HXaU7d+L88cPAaIIQRBQXFyMm266CQkJCd4uj4jIpwmCgFtvvRV2ux379u3D+83NUALI88PgpLPb8c+GBhgcDiQnJ+Phhx9GmB/+HEQAQxORTwgJCUFJSQmmT5+OTz75BJ9//jnaLtRg37//jnHTZyEld6y3SxwQvbYFx3duh0HbAgAoLCzE/Pnz2QmPiGgQFAoFli5dCrvdjv379+P9lhZ8R6VCilrt7dIGzOp0YltjI/QOBxITE7F27VouySa/xtBE5EPCwsJw880349prr8Wrr76KqqoqHN+5Hc3nz2Hc9FkIUvtmZzlRFFF94jDKvv4CTocD4eHhWLZsGQoLC71dGhGRX1IoFFi2bBk6OztRWlqKt5uasDwlBRF+0G3VKYp4r7kZLTYbIiIi8NBDD3FvTPJ78m3VReTH4uPj8eijj2L+/PlQKBRoqDiDfW/+HdoLNd4urQdzpwEHP9iGM/t2welwoKCgAD/84Q8ZmIiIrpBSqcQ999yD5ORkdDoceLupCVan09tl9Wt3WxvOmUxQqVS4//772VacZIGhichHKZVKlJSUYN26dYiPj4e5U48D772JyqMHvF2aS3vjBex781Vo66oRFBSE22+/HatXr+YnikREQyQkJASrV69GWFgYGq1WbG9pgSiK3i6rT8f1euzX6QAAd955J7Kzs71bENEQYWgi8nHZ2dl44oknMG3aNABA2Ve7ce7QV16uqmvfpYMfbIPNYkZ6ejp+8IMfYPr06X7d8Y+IyBfFxcXhvvvug1KpRJnR6AolvqbJasXHra0AgJKSElx11VVeroho6DA0EfkBtVqNO+64AwsWLAAAlB/Yi4qDX3qtnrb6Whz64C04bDbk5eXh0UcfRVJSktfqISKSu5ycHNx2220AgC/a2tBosXi5Inc2pxPvNzfDga4mQDfeeKO3SyIaUgxNRH5k3rx5WLhwIQCg4uA+lB/YN+LLNLQXanFo+9tw2G3Iz8/H6tWrofajjk5ERP5q2rRpKCoqghPA+y0tsPnQ/U2729rQ2t34YdmyZVAo+BaT5IV/o4n8zNy5c3HzzTcDAM4d+hJVxw6O2HPrWhpx+MO34LDbMHbsWDzwwAMIDg4esecnIgpkgiDgjjvuQGRkJLQ2Gz5va/N2SQCASpMJh/R6AF33MbG1OMkRQxORH5o9ezYWL14MACjfvwcdzQ3D/pwOuw3HPtkOh92OMWPG4P7772dgIiIaYeHh4bjzzjsBAIf1epw3mbxaj8XpxIctXXvzzZgxAwUFBV6th2i4MDQR+amZM2di0qRJEJ1OHN/5IRx227A+39kvd8PY0YaoqCjcc889CAoKGtbnIyKi3o0bNw7XXXcdAGCnVguHF7vp7WtvR6fDgYSEBNcqCCI5Ymgi8lOCIGDp0qWIioqCsaMNZ7/cPWzP1VxdiZrSowC6ll6EhYUN23MREVH/Fi5ciLCwMLTabDjavTRupGltNhzq7uS3ZMkSrj4gWWNoIvJjYWFhrmUaNaVH0VpXPeTPYbdacHLXDgDAt7/9bYwdO3bIn4OIiAZHo9Fg/vz5AIA97e0wOhwjXsOnWi2cAAoKCjB+/PgRf36ikcTQROTnxo4di+nTpwMAKg7sHfJuejWlx2A1GZGQkIBFixYN6bWJiOjyXXvttUhLS4PF6cSe9vYRfe5zRiMqTSYolUosWbJkRJ+byBsYmohkYN68eVAqlWhvrEdbQ92QXddht+P88UOu5+DSCyIi36FQKHDrrbcCAI7r9dDZ7SPyvKIoYm93SJsxYwYSExNH5HmJvMmvQtPPf/5zCILg9sWlQkRAVFQUpk6dCgCoPPz1kF237swJWE1GxMbGcmd3IiIflJubi9zcXDgBHOjoGJHnrDab0WC1Ikilwpw5c0bkOYm8za9CEwCMHz8e9fX1rq8vvvjC2yUR+YTZs2dDoVCgtfY8dC2NV3w90elE1dGuPaBmzZoFpVJ5xdckIqKhN3fuXADAMYNhRO5t+qo7nE279lpEREQM+/MR+QK/C00qlQrJycmur/j4eG+XROQT4uLiMHHiRABAfdnpK75eW0MdzAYdNBoNrrnmmiu+HhERDY8xY8YgIyMDdlF0dbMbLvUWC6rNZigUCsycOXNYn4vIl/hdaCorK0NqaipGjx6Nu+66C9XVnruFWSwW6HQ6ty8iuSouLgYANJ4ru+KGEI3nygAARUVFvJeJiMiHCYLgmm06otfDPoz7Nkmh7Oqrr0ZsbOywPQ+Rr/Gr0HTNNdfg5ZdfxocffohNmzahsrISM2bMgN7D/gQbN25EVFSU6ysjI2MEKyYaWWPHjoVarYa5U4+OpobLvo7odKKxsis0TZo0aYiqIyKi4VJUVISoqCiYnU5UGI3D8hxmhwNnu689Y8aMYXkOIl/lV6Hppptuwu23344JEyagpKQEH3zwAdrb2/Gvf/2rz3OefPJJdHR0uL5qampGsGKikRUcHOzaK0MKPZejrfECrCYjQkNDkZ+fP1TlERHRMFEoFK6l1MeHabPbU52dcIgiUlJS+CE0BRy/Ck2Xio6ORn5+PsrLy/sco1arERkZ6fZFJGdFRUUAAO0VbHQrnVtQUACVSjUkdRER0fCSQlOV2Tws7cePGwwAgKlTp0IQhCG/PpEv8+vQZDAYUFFRgZSUFG+XQuQzcnNzAQD61mbYLObLukZbfS0AIC8vb8jqIiKi4RUfH+/6d7u0O+AMlWarFU1WK5RKJaZMmTKk1ybyB34Vmh5//HHs2rULVVVV2Lt3L5YsWQKlUolly5Z5uzQinxEZGenaaPByNrp12O2u+6FycnKGtDYiIhpe0p56ZUN8X5N0vbFjxyIsLGxIr03kD/wqNNXW1mLZsmUYM2YMli5diri4OHz55ZdISEjwdmlEPkUKO231gw9NuuYGOB0OREZG8neLiMjPjB8/HoIgoNFqHdIleuXdoWnChAlDdk0if+JXNyts3brV2yUQ+YVRo0Zh37590DUPvoNeR3PXxrjZ2dlcs05E5GciIyORnZ2NyspKlBuNKB6Ce7k7bDY0Wa0QBAGFhYVDUCWR//GrmSYiGhipq5GupXnQ+zXpWprcrkFERP5Fmg0qH6IlehUmEwBg9OjRCA8PH5JrEvkbhiYiGUpKSkJQUBAcNitMuo5BnavvDk3p6enDURoREQ0zaeuJOrMZNqfziq9X1R2apOsSBSKGJiIZUiqVrq6SupbGAZ9nt9nQ2a4FwNBEROSvEhMTERUVBQeAeovliq7lFEXUmrs6sXLfPgpkDE1EMpWWlgYAMGhbB3xOZ1vX2PDwcO5pRkTkpwRBcLUerzZf3tYTkkarFVZRRGhoqOt1hSgQMTQRyVRycjIAwNA+8NAkjeXeZ0RE/k0KTeevMDRVdy/Ny83NhULBt40UuPi3n0impNDU2aYd8DnSWOlcIiLyT1JoarRYYL+C+5rqupf3SRunEwUqhiYimZKCj7GjHU6HY0DnGLqX5yUlJQ1bXURENPxiY2MRHh4OJ4Amq/WyriGKouueqOzs7KErjsgPMTQRyVRUVBSCg4Mhik6Y9LoBnWPsaAfA0ERE5O8EQUBWVhYAoP4yQ1OH3Q6T0wmlUsn7mSjgMTQRyZQgCEhISAAAGHXt/Y53Op0w6bvak0vnERGR/5JCU8NldtCTzktLS0NQUNCQ1UXkjxiaiGQsPj4ewMBCk9mgh+h0QqVSISoqapgrIyKi4XbFoal7hiozM3PIaiLyVwxNRDLmCk3dy+48MXUHq/j4eHZIIiKSgdTUVABAm91+WZvcNneHJi7NI2JoIpK1uLg4AHAtu/NEGhMbGzusNRER0ciIjIxEeHg4AKDFZhv0+VJoksIXUSBjaCKSsejoaACApdPQ71izoWtMTEzMcJZEREQjSAo8LYNsBtHpcMDodEIQBO7dRwSGJiJZkwKQ2aDvd6y5U+92DhER+T8pNDUPMjRJISsuLg5qtXrI6yLyNwxNRDImBSCbxQy7zfMLpqk7WEmzU0RE5P+kLSS0dvugztN2L+fjZudEXRiaiGQsNDQUwcHBAACryehxrNXYCQDsnEdEJCOJiYkAgLZB3tMkjecWFERdGJqIZE66CdhqMnkcZzWb3MYTEZH/k0KPzm6HXRQHfJ40MyWFLqJAx9BEJHNhYWEAAKu575km0emEjaGJiEh2IiMjoVarIQJoH8RskzTTxNBE1IWhiUjmpBBk8zDTZLOYXX+WQhYREfk/QRBce/Z1DPC+JqcoQtc9VjqXKNAxNBHJnEajAQDYPXROko6p1WoolcoRqYuIiEaGtGffQEOT3uGACECpVCIyMnIYKyPyHwxNRDInNYJw2PteliEdk8YSEZF8SJuW6wYYmqRxMTExUCj4VpEIYGgikr0BhSYbQxMRkVxJoWmgM03SOOk8ImJoIpI9V2jycAMwZ5qIiORLCj/6gS7Pu2imiYi6MDQRyZx0j5LT6exzjHSM9zMREcmPdF+SweEY0HhpHDc7J/oGQxMRERGRjEnhp9PhgHMAezUZumeauNk50TcYmoiIiIhkLDw8HIIgQARgHMBskzTTxNBE9A2GJiIiIiIZUyqViIiIADCwJXqdDE1EPTA0EcmcdL+Sp7ax0jHHANe7ExGRf5FCk6mff+dFUXTNRkmboxMRQxOR7FksFgCAMiiozzFKVdcxm4cOe0RE5L+kAGT00BQIACxOJ6QRDE1E32BoIpI5KQgpVKo+x0jHrFbriNREREQjyxWa+plpkkJVSEgIgjx82EYUaBiaiGROCkLSbFJvpFkohiYiInkacGji0jyiXjE0Ecmc2WwGAKiC+t64VjpmsVg87udERET+KSwsDABg7uffeOm4RqMZ9pqI/AlDE5HMdXZ2AgCCQkL6HBOk7jomiiJMJtOI1EVERCMnNDQUAEMT0eViaCKSOVdoUof2OUahVELZPdskjSciIvmQQpClv0YQ3cvzGJqI3DE0EcncQGaaLj5uNBqHvSYiIhpZUgjqb6bJ1H1cmpkioi4MTUQy5nQ6XSEoOMTzC6B03GAwDHtdREQ0sqQQ1N9Mk5WhiahXDE1EMmYwGCCKIiAI/Yem0K5PIXU63UiURkREIyikezWBtb/QJIpu44moC0MTkYxJASg4JBSCwvOvu1rT1VlJr9cPe11ERDSypBBkcTq7Pkzrg+WifZqI6BsMTUQyJgUgKRB5og7tGsOZJiIi+ZFCkBOAw0NosjI0EfWKoYlIxlwzTaH9d0EK1nB5HhGRXKnVatefrZ5CE5fnEfWKoYlIxqQANKCZJg1nmoiI5EqhUCAoKAgAYPNwX5N0LDi47w3RiQIRQxORjA0qNHF5HhGRrEmzTZ5mmmzdxy6emSIihiYiWXMtzxtAaAq+aKbJ003CRETkn6Qg5GmmycqZJqJeMTQRyZirEcQA7mmSZqPsdjssFsuw1kVERCNPCkI2zjQRDRpDE5GMSRvVDqQRhFKlgrJ7vTvbjhMRyU9/oUkURdi7j3GmicgdQxORjEnhp7+NbSXSOClsERGRfEhByN7H8ryLwxRDE5E7hiYimXI4HDAajQAGNtN08TjONBERyU9/M00XPy512iOiLgxNRDJlMplcf1apB7bfRlD3OClsERGRfPQXmqQZqKCgICgUfItIdDH+RhDJlNlsBgAoVKoBv/ipgoLdziUiIvnob58mG+9nIuoTQxORTEnBJyh44B2QVN1j2T2PiEh+XC3H+1mex9BE1BNDE5FMSaFJGTTwFz9l9wvlxUv7iIhIHvpdnsfQRNQnvw5Nv/zlLyEIAtavX+/tUoh8js1mAwAoVQO/mVepUgHo2quJiIjkRVqe12f3PG5sS9Qnvw1N+/fvx+bNmzFhwgRvl0Lkk5zdL36CQhjwOUL3vU8Oh2NYaiIiIu/h8jyiy+eXoclgMOCuu+7CX/7yF8TExHi7HCKf9E1oGvivuSAo3M4lIiL56LflOGeaiPrkl6Fp7dq1WLBgAebMmdPvWIvFAp1O5/ZFFAik2SJB4EwTERFdNNPUxwdj1u4wJY0jom+ovF3AYG3duhWHDh3C/v37BzR+48aN2LBhwzBXReR7XG3G+/hEsVei0/1cIiKSjYFubsuZJqKe/Co01dTUYN26dfjvf/+LkJCBbdb55JNP4rHHHnN9r9PpkJGRMVwlEvkMVXdTh0tnjZQqFWbd+4jrzxdz2B1u5xIRkXxIM0hWpxNBgoBHMzMBAEHdKxKkGSjONBH15FfvjA4ePIimpiYUFxe7HnM4HPj888/xf//3f7BYLFAqlW7nqNVq/vJTQJK6JDkd7p3wBEGAKqj3jnqi0+F2LhERyYcrNIkiBEFA8CXLt60MTUR98qvQNHv2bBw/ftztsXvvvRdjx47FD3/4wx6BiSiQSbNFzkG0D3d0j+VMExGR/Fw809QbG+9pIuqTX70zioiIQGFhodtjYWFhiIuL6/E4UaCTXvTsVuuAz5HGDnT5KxER+Y/+Wo5LYYqvAUQ98W5vIpkKDw8HANgsZogDbCFuM5sAdH0YQURE8iKFIbsowtFLcLJwpomoT34109Sbzz77zNslEPmki4OPzWpBcEhov+fYLAxNRERydfEMktXpROgltzVwpomob5xpIpIppVKJ0NCuoCTNIPXHajYDYGgiIpIjpVLpavRj6WUFgoWhiahPDE1EMhYZGQkAMHca+h0riiIs3eOk84iISF6kD9N6awYhPSaNIaJvMDQRyVhMTAwAwGzQ9zvWZjHDYbe5nUdERPIizSKZOdNENCgMTUQy9k1o0vU7VhoTERHBfZqIiGTKNdN0SSMIpyi6HtNoNCNeF5GvY2gikjEpNJn0/c80SbNRnGUiIpIvKRCZHQ63xy++x4nL84h6YmgikrG4uDgAgEnf3u9YY0e72zlERCQ/UiC6tBGE9H1wcDCUl3TVIyKGJiJZS0xMBAB0trf1O7azo83tHCIikh8pNF16T5P0PZfmEfWOoYlIxqQAZDUZYbNaPI6VghVDExGRfElbSjA0EQ0OQxORjIWEhLjahxv7mW0ycqaJiEj2XPc0XRqauu9xYmgi6h1DE5HMJSUlAQAM7a19jrGaTbCajAAYmoiI5EyaaTJdEppMnGki8oihiUjmUlJSAAAGbd+hydDWdSw2Npb7cxARyVhf3fOkmScpVBGRO4YmIplzhaY2D6GpO1AlJyePSE1EROQdvKeJ6PIwNBHJ3DczTS19jjG0tbiNJSIieZJCkemSmSbpe840EfWOoYlI5qTZI0unATaLudcxUqBiaCIikjcpFFlEEQ5RdD1u4vI8Io8YmohkLjQ0FDExMQB6n20SRdG1PC81NXVEayMiopGl0WggCAIA9yV6nGki8oyhiSgASDNI+l6aQVg6DbBbLVAoFK5Oe0REJE8KhcK1we3FS/Q400TkGUMTUQCQZpAM2uYex/TdjyUlJUGlUo1oXURENPLCw8MBuLcdlwKUdIyI3DE0EQWAb0JTz5km6THez0REFBhcezV1ByWHKMLafX8TZ5qIesfQRBQALm47Ll504y/AJhBERIHm0g1upfAkCIJr6R4RuWNoIgoAiYmJUCgUsFstsHQa3I5J+zcxNBERBYZLZ5pMF+3RpFDwrSFRb/ibQRQAVCoVEhMTAQD6izroOZ1OGNq0ANg5j4goUFx6TxPvZyLqH0MTUYCQ9mvqbNe6HjPpOyA6HQgKCnK1JSciInnra6aJ9zMR9Y2hiShASO3ELw5Nnd2zTNLyPSIikr++7mliaCLqG98lEQUIV2hquyg0dQco7s9ERBQ4ONNENHgMTUQBoteZJoYmIqKAI4Ujc3dYMjM0EfWLoYkoQCQkJAAAbBYzbBYzAMDY0Q4AriYRREQkfz1mmrg8j6hfDE1EAUKtViMyMhIAYNS1u/1vfHy8l6oiIqKRJoUjiyjCKYpcnkc0AAxNRAEkLi4OAGDSdcBus8FqMgJgaCIiCiQXb2Brcjph5kwTUb8YmogCiBSOjLoOmPQdALo2M9RoNN4si4iIRpBSqXQFJ7PD4bqnia8FRH1jaCIKINJMk1mvg1mvAwDExsZ6syQiIvICKSBZnE6GJqIBYGgiCiDR0dEAAHOnHuZOPQBwU1siogAkzTSZGJqIBoShiSiASAHJZNDDbOgKTVKQIiKiwCEFJJ3dDrH7sYvvdSIidwxNRAFECkiWi0ITZ5qIiAKPFJo67HYAgEqlQnBwsDdLIvJpDE1EASQqKgoAYLdZYexuBCG1ISciosAhzSrpukMTl+YRecbQRBRAQkJCoFKpAAAGbQsAICIiwpslERGRF0ihSZppCgkJ8WY5RD6PoYkogAiC4ApJDpsNAEMTEVEgunSmifczEXnG0EQUYC5djsfQREQUeKSZJVN35zyGJiLPVN4ugIhG1rRp09De3g6n04m8vDyGJiKiAHTpcjwuzyPyjKGJKMBMmzYN06ZN83YZRETkRZeGJLVa7aVKiPwDl+cRERERBRjONBENDkMTERERUYC5dGaJoYnIM4YmIiIiogDD5XlEg8PQRERERBRggoODPX5PRO4YmoiIiIgCzKUzS5xpIvKMoYmIiIgowHCmiWhwGJqIiIiIAoxKpYJC8c3bwKCgIC9WQ+T7GJqIiIiIAtDFQYkzTUSeMTQRERERBSCGJqKBY2giIiIiCkAXByUuzyPyjKGJiIiIKAAlJiYCABQKBaKjo71bDJGPU3m7ACIiIiIaeatWrcL58+cRHx8PjUbj7XKIfJpfzTRt2rQJEyZMQGRkJCIjIzFt2jRs377d22URERER+R21Wo38/HzExsZ6uxQin+dXoSk9PR2//OUvcfDgQRw4cACzZs3C4sWLcfLkSW+XRkREREREMiWIoih6u4grERsbi2effRb33XffgMbrdDpERUWho6MDkZGRw1wdERERERH5qoFmA7+9p8nhcOCNN95AZ2cnpk2b1uc4i8UCi8Xi+l6n041EeUREREREJBN+tTwPAI4fP47w8HCo1WqsWbMGb731FgoKCvocv3HjRkRFRbm+MjIyRrBaIiIiIiLyd363PM9qtaK6uhodHR148803sWXLFuzatavP4NTbTFNGRgaX5xERERERBbiBLs/zu9B0qTlz5iAnJwebN28e0Hje00RERERERMDAs4HfLc+7lNPpdJtJIiIiIiIiGkp+1QjiySefxE033YTMzEzo9Xq89tpr+Oyzz/DRRx95uzQiIiIiIpIpvwpNTU1NWLFiBerr6xEVFYUJEybgo48+wty5c71dGhERERERyZRfhaYXX3zR2yUQEREREVGA8ft7moiIiIiIiIYTQxMREREREZEHDE1EREREREQeMDQRERERERF5wNBERERERETkAUMTERERERGRBwxNREREREREHvjVPk1DQRRFAIBOp/NyJURERERE5E1SJpAyQl8CLjTp9XoAQEZGhpcrISIiIiIiX6DX6xEVFdXncUHsL1bJjNPpxIULFxAREQFBELxdDpFX6HQ6ZGRkoKamBpGRkd4uh4iIvICvBURdM0x6vR6pqalQKPq+cyngZpoUCgXS09O9XQaRT4iMjOQLJRFRgONrAQU6TzNMEjaCICIiIiIi8oChiYiIiIiIyAOGJqIApFar8bOf/QxqtdrbpRARkZfwtYBo4AKuEQQREREREdFgcKaJiIiIiIjIA4YmIiIiIiIiDxiaiIiIiIiIPGBoIiIAQFVVFQRBwJEjR7xdChER+bDs7Gw899xz3i6DaEQxNBH5sZUrV0IQBKxZs6bHsbVr10IQBKxcuXLkCyMioiEh/Tt/6Vd5ebm3SyMKKAxNRH4uIyMDW7duhclkcj1mNpvx2muvITMz04uVERHRULjxxhtRX1/v9jVq1Chvl0UUUBiaiPxccXExMjIysG3bNtdj27ZtQ2ZmJiZPnux67MMPP8T06dMRHR2NuLg4LFy4EBUVFR6vfeLECdx0000IDw9HUlIS7r77brS0tAzbz0JERD2p1WokJye7fSmVSvznP/9BcXExQkJCMHr0aGzYsAF2u911niAI2Lx5MxYuXAiNRoNx48Zh3759KC8vxw033ICwsDBce+21bq8FFRUVWLx4MZKSkhAeHo4pU6bg448/9lhfe3s77r//fiQkJCAyMhKzZs3C0aNHh+2/B5E3MDQRycCqVavw0ksvub7/61//invvvddtTGdnJx577DEcOHAAn3zyCRQKBZYsWQKn09nrNdvb2zFr1ixMnjwZBw4cwIcffojGxkYsXbp0WH8WIiLq3+7du7FixQqsW7cOpaWl2Lx5M15++WX8z//8j9u4X/ziF1ixYgWOHDmCsWPH4s4778SDDz6IJ598EgcOHIAoinjkkUdc4w0GA+bPn49PPvkEhw8fxo033ohFixahurq6z1puv/12NDU1Yfv27Th48CCKi4sxe/ZsaLXaYfv5iUacSER+65577hEXL14sNjU1iWq1WqyqqhKrqqrEkJAQsbm5WVy8eLF4zz339Hpuc3OzCEA8fvy4KIqiWFlZKQIQDx8+LIqiKP7iF78Q582b53ZOTU2NCEA8c+bMcP5YRETU7Z577hGVSqUYFhbm+rrtttvE2bNni88884zb2FdffVVMSUlxfQ9A/MlPfuL6ft++fSIA8cUXX3Q99vrrr4shISEeaxg/frz4xz/+0fV9VlaW+Lvf/U4URVHcvXu3GBkZKZrNZrdzcnJyxM2bNw/65yXyVSqvJjYiGhIJCQlYsGABXn75ZYiiiAULFiA+Pt5tTFlZGZ566il89dVXaGlpcc0wVVdXo7CwsMc1jx49ik8//RTh4eE9jlVUVCA/P394fhgiInIzc+ZMbNq0yfV9WFgYJkyYgD179rjNLDkcDpjNZhiNRmg0GgDAhAkTXMeTkpIAAEVFRW6Pmc1m6HQ6REZGwmAw4Oc//znef/991NfXw263w2Qy9TnTdPToURgMBsTFxbk9bjKZ+l0CTuRPGJqIZGLVqlWuJRZ/+tOfehxftGgRsrKy8Je//AWpqalwOp0oLCyE1Wrt9XoGgwGLFi3Cr371qx7HUlJShrZ4IiLqU1hYGHJzc90eMxgM2LBhA2699dYe40NCQlx/DgoKcv1ZEIQ+H5M+SHv88cfx3//+F7/5zW+Qm5uL0NBQ3HbbbR5fK1JSUvDZZ5/1OBYdHT2wH5DIDzA0EcnEjTfeCKvVCkEQUFJS4nastbUVZ86cwV/+8hfMmDEDAPDFF194vF5xcTH+/e9/Izs7GyoV/6kgIvIlxcXFOHPmTI8wdaX27NmDlStXYsmSJQC6QlFVVZXHOhoaGqBSqZCdnT2ktRD5EjaCIJIJpVKJU6dOobS0FEql0u1YTEwM4uLi8MILL6C8vBw7d+7EY4895vF6a9euhVarxbJly7B//35UVFTgo48+wr333guHwzGcPwoREfXjqaeewiuvvIINGzbg5MmTOHXqFLZu3Yqf/OQnV3TdvLw8bNu2DUeOHMHRo0dx55139tkwCADmzJmDadOm4ZZbbsGOHTtQVVWFvXv34sc//jEOHDhwRbUQ+RKGJiIZiYyMRGRkZI/HFQoFtm7dioMHD6KwsBDf+9738Oyzz3q8VmpqKvbs2QOHw4F58+ahqKgI69evR3R0NBQK/tNBRORNJSUleO+997Bjxw5MmTIFU6dOxe9+9ztkZWVd0XV/+9vfIiYmBtdeey0WLVqEkpISFBcX9zleEAR88MEH+Pa3v417770X+fn5uOOOO3D+/HnXPVREciCIoih6uwgiIiIiIiJfxY+LiYiIiIiIPGBoIiIiIiIi8oChiYiIiIiIyAOGJiIiIiIiIg8YmoiIiIiIiDxgaCIiIiIiIvKAoYmIiIiIiMgDhiYiIiIiIiIPGJqIiIj6kZ2djZUrV3q7DCIi8hKGJiIi8imVlZV45JFHkJ+fD41GA41Gg4KCAqxduxbHjh3zdnlERBSAVN4ugIiISPLee+/hO9/5DlQqFe666y5MnDgRCoUCp0+fxrZt27Bp0yZUVlYiKyvL26USEVEAYWgiIiKfUFFRgTvuuANZWVn45JNPkJKS4nb8V7/6Ff785z9DofDvRRJ2ux1OpxPBwcHeLoWIiAbIv195iIhINn7961+js7MTL730Uo/ABAAqlQqPPvooMjIyXI+dPn0at912G2JjYxESEoKrr74a77zzjtt5L7/8MgRBwJ49e/DYY48hISEBYWFhWLJkCZqbm93GiqKIp59+Gunp6dBoNJg5cyZOnjzZa73t7e1Yv349MjIyoFarkZubi1/96ldwOp2uMVVVVRAEAb/5zW/w3HPPIScnB2q1GqWlpVfyn4qIiEYYZ5qIiMgnvPfee8jNzcU111wzoPEnT57Eddddh7S0NPzoRz9CWFgY/vWvf+GWW27Bv//9byxZssRt/He/+13ExMTgZz/7GaqqqvDcc8/hkUcewT//+U/XmKeeegpPP/005s+fj/nz5+PQoUOYN28erFar27WMRiOuv/561NXV4cEHH0RmZib27t2LJ598EvX19Xjuuefcxr/00kswm81YvXo11Go1YmNjL+8/EhEReQVDExEReZ1Op8OFCxdwyy239DjW3t4Ou93u+j4sLAyhoaFYt24dMjMzsX//fqjVagDAww8/jOnTp+OHP/xhj9AUFxeHHTt2QBAEAIDT6cQf/vAHdHR0ICoqCs3Nzfj1r3+NBQsW4N1333WN+/GPf4xnnnnG7Vq//e1vUVFRgcOHDyMvLw8A8OCDDyI1NRXPPvssvv/977vNiNXW1qK8vBwJCQlX/h+LiIhGHJfnERGR1+l0OgBAeHh4j2M33HADEhISXF9/+tOfoNVqsXPnTixduhR6vR4tLS1oaWlBa2srSkpKUFZWhrq6OrfrrF692hWEAGDGjBlwOBw4f/48AODjjz+G1WrFd7/7Xbdx69ev71HTG2+8gRkzZiAmJsb13C0tLZgzZw4cDgc+//xzt/H/7//9PwYmIiI/xpkmIiLyuoiICACAwWDocWzz5s3Q6/VobGzE8uXLAQDl5eUQRRE//elP8dOf/rTXazY1NSEtLc31fWZmptvxmJgYAEBbWxsAuMKTNHMkSUhIcI2VlJWV4dixY30GoaamJrfvR40a1es4IiLyDwxNRETkdVFRUUhJScGJEyd6HJPucaqqqnI9JjVbePzxx1FSUtLrNXNzc92+VyqVvY4TRXHQ9TqdTsydOxdPPPFEr8fz8/Pdvg8NDR30cxARke9gaCIiIp+wYMECbNmyBV9//TW+9a1veRw7evRoAEBQUBDmzJkzJM8v7f1UVlbmuj4ANDc3u2ajJDk5OTAYDEP23ERE5Nt4TxMREfmEJ554AhqNBqtWrUJjY2OP4xfPCCUmJuKGG27A5s2bUV9f32Pspa3EB2LOnDkICgrCH//4R7fnurQTHgAsXboU+/btw0cffdTj2KWNK4iIyP9xpomIiHxCXl4eXnvtNSxbtgxjxozBXXfdhYkTJ0IURVRWVuK1116DQqFAeno6AOBPf/oTpk+fjqKiIjzwwAMYPXo0GhsbsW/fPtTW1uLo0aODev6EhAQ8/vjj2LhxIxYuXIj58+fj8OHD2L59O+Lj493G/uAHP8A777yDhQsXYuXKlbjqqqvQ2dmJ48eP480330RVVVWPc4iIyH8xNBERkc9YvHgxjh8/jv/93//Fjh078Ne//hWCICArKwsLFizAmjVrMHHiRABAQUEBDhw4gA0bNuDll19Ga2srEhMTMXnyZDz11FOX9fxPP/00QkJC8Pzzz+PTTz/FNddcgx07dmDBggVu4zQaDXbt2oVnnnkGb7zxBl555RVERkYiPz8fGzZsQFRU1BX/tyAiIt8hiJdzBywREREREVGA4D1NREREREREHjA0ERERERERecDQRERERERE5AFDExERERERkQcMTURERERERB4wNBEREREREXnA0EREREREROQBQxMREREREZEHDE1EREREREQeMDQRERERERF5wNBERERERETkAUMTERERERGRB/8fijkDjwrbIKEAAAAASUVORK5CYII=",
+ "text/plain": [
+ "