-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathapp.py
76 lines (63 loc) · 2.47 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st
import numpy as np
import pandas as pd
import subprocess
import json
from simplex import main
import pickle
# Function to call your simplex.py script
def call_simplex(data):
# Save the data to a json file
with open('simplex_input.json', 'w') as f:
json.dump(data, f)
# Call the simplex.py script
output_file = main('simplex_input.json')
return output_file
# result = subprocess.run(['python', 'simplex.py', 'simplex_input.json'], capture_output=True, text=True)
# return result.stdout
st.title("Linear Programming Calculator")
# Input: Number of Variables and Constraints
num_variables = st.number_input('Number of Variables', min_value=1, step=1)
num_constraints = st.number_input('Number of Constraints', min_value=1, step=1)
if num_variables > 0 and num_constraints > 0:
st.subheader("Objective Function Coefficients")
objective = []
for i in range(num_variables):
coeff = st.number_input(f'Coefficient for x{i + 1}', key=f'obj_{i}')
objective.append(coeff)
st.subheader("Constraints")
constraints = []
for i in range(num_constraints):
st.write(f'Constraint {i + 1}')
constraint = []
for j in range(num_variables):
coeff = st.number_input(f'Coefficient for x{j + 1} in Constraint {i + 1}', key=f'con_{i}_{j}')
constraint.append(coeff)
rhs = st.number_input(f'Right-hand side for Constraint {i + 1}', key=f'rhs_{i}')
constraint.append(rhs)
constraints.append(constraint)
if st.button('Calculate'):
# Prepare data for simplex.py
data = {
'num_of_vars': num_variables,
'num_of_cons': num_constraints,
'objective': objective,
'constraints': constraints
}
result_file = call_simplex(data)
print("Printing result from app.py")
print(result_file)
st.write(f"Result has been saved in: ", result_file)
# Read the result from the temporary file
with open(result_file, 'rb') as f:
tables = pickle.load(f)
# Display each table using Streamlit
st.write("Simplex Tables:")
for i, table in enumerate(tables):
st.write(f"Iteration {i + 1}")
st.table(table)
# Inform the user where the result has been saved
st.write(f"Result has been saved in: {result_file}")
# Write the code to parse the list
# st.subheader("Result")
# st.write(result)