forked from AISocietyIITJ/Face-Tracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
124 lines (106 loc) · 3.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
Main training function
"""
from datetime import datetime
import json
import tensorflow as tf
from model.create_model import get_model
from data.dataset_generator import generate_data_for_classifier, generate_data_for_siamese
from tensorflow.keras.callbacks import CSVLogger
with open('configurations.json', encoding='utf-8') as load_value:
configurations = json.load(load_value)
with open(
configurations["MODEL_DIR"] + "/" + "model_specifications.json", encoding='utf-8') as specs:
model_config = json.load(specs)
def main(_args):
"""
Main function for training the model.
"""
# Loading the Data
if model_config["model_type"].lower() == "siamese":
data = generate_data_for_siamese(
configurations["IMAGE_DIR"],
is_augmented=False,
batch_size=configurations["BATCH_SIZE"]
)
elif model_config["model_type"].lower() == "classifier":
data = generate_data_for_classifier(
configurations["IMAGE_DIR"],
is_augmented=False,
batch_size=configurations["BATCH_SIZE"]
)
elif model_config["model_type"].lower() == "ran_classifier":
data = generate_data_for_classifier(
configurations["IMAGE_DIR"],
is_augmented=False,
batch_size=configurations["BATCH_SIZE"]
)
elif model_config["model_type"].lower() == "save":
data = generate_data_for_classifier(
configurations["IMAGE_DIR"],
is_augmented=False,
batch_size=configurations["BATCH_SIZE"],
)
return
gpus = tf.config.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
try:
tf.config.set_logical_device_configuration(
gpu,
[tf.config.LogicalDeviceConfiguration(
memory_limit=configurations["GPU_MEMORY_LIMIT"])]
) # Allocating 37 GB of memory out of 40GB available
logical_gpus = tf.config.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as _e:
# Virtual devices must be set before GPUs have been initialized
print(_e)
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
# Loading the model
model = get_model(model_config)
# saving the history of the model
csv_log = CSVLogger(
"../history/"+
str(model_config["model_type"])+
str(model_config["base_architecture"])+
str(model_config["__loss_options__"]["siamese_loss"])+
str(model_config["optimizer"])+
"-training.log",
separator=",",
append=True
)
# saving model checkpoints
weights_dir = "../weights"
checkpoint = tf.keras.callbacks.ModelCheckpoint(
weights_dir +
"/"+
str(model_config["model_type"])+"-{epoch}-"+str(model_config["base_architecture"])+
str(model_config["optimizer"])+
str(model_config["lr"])+
str(model_config["__loss_options__"]["siamese_loss"])+"cosine"+
str(configurations["BATCH_SIZE"])+
"-"+str("net")+"_{loss:.4f}.h5",
monitor="loss",
verbose=1,
save_best_only=True,
save_weights_only=True,
mode="min",
)
# Define the Keras TensorBoard callback.
logdir = "../logs/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
model.optimizer.momentum = 0.9
model.fit(
data,
epochs=model_config["epochs"],
callbacks=[tensorboard_callback, checkpoint, csv_log],
verbose=1
)
if __name__ == "__main__":
try:
tf.compat.v1.app.run(main)
except SystemExit:
pass
# EOL