-
Notifications
You must be signed in to change notification settings - Fork 2
/
LSTM_4_tagger.py
193 lines (130 loc) · 4.11 KB
/
LSTM_4_tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import datetime
import numpy as np
import os
#OMP_NUM_THREADS = 4
os.environ["OMP_NUM_THREADS"] = "4"
start = datetime.datetime.now()
#make every sentence to index sequence
def prepare_sequence(seq, to_ix):
idxs = []
for w in seq:
if not to_ix.has_key(w):
idxs.append(-1)
else:
idxs.append(to_ix[w])
#idxs = [to_ix[w] for w in seq]
tensor = torch.LongTensor(idxs)
return Variable(tensor)
#Read data from file
def read_corpus(filename):
data = []
data_string_list = list(open(filename))
print len(data_string_list)
element_size = 0
X = list()
Y = list()
for data_string in data_string_list:
words = data_string.strip().split()
if len(words) is 0:
data.append((X,Y))
X = list()
Y = list()
else:
if element_size is 0:
element_size = len(words)
X.append(words[0])
Y.append(words[-1])
if len(X)>0:
data.append((X,Y))
return data
training_data = read_corpus('train')
print('the length of training data')
print(len(training_data))
word_to_ix = {}
tag_to_ix = {}
for sent, tags in training_data:
for word in sent:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
for tag in tags:
if tag not in tag_to_ix:
tag_to_ix[tag] = len(tag_to_ix)
print (len(tag_to_ix))
print ("len of tag")
print (len(tag_to_ix))
EMBEDDING_DIM = 300
HIDDEN_DIM = 300
class LSTMTagger(nn.Module):
"""docstring for LSTMTagger"""
def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size):
super(LSTMTagger, self).__init__()
self.hidden_dim = hidden_dim
self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim,hidden_dim)
self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
self.hidden = self.init_hidden()
def init_hidden(self):
return (Variable(torch.zeros(1, 1, self.hidden_dim)),
Variable(torch.zeros(1, 1, self.hidden_dim)))
def forward(self, sentence):
embeds = self.word_embeddings(sentence)
lstm_out, self.hidden = self.lstm(embeds.view(len(sentence), 1, -1), self.hidden)
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))
_, tag_seq = torch.max(tag_score, 1)
return tag_score, tag_seq
#training
model = LSTMTagger(EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_fn = nn.NLLLoss()
optimizer = optim.SGD(model.parameters(), lr = 0.001)
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_score = model(inputs)
print (tag_score)
for epoch in range(30):
print ("in epoch %d" % epoch)
for sentence, tags in training_data:
model.zero_grad()
model.hidden = model.init_hidden()
sentence_in = prepare_sequence(sentence, word_to_ix)
#print ("####")
#print sentence_in.data[1:4]
targets = prepare_sequence(tags, tag_to_ix)
tag_scores = model(sentence_in)
loss = loss_fn(tag_scores, targets)
loss.backward()
optimizer.step()
inputs = prepare_sequence(training_data[0][0], word_to_ix)
tag_score = model(inputs)
print("tag_socre")
print(tag_score)
#testing
#torch.save(model.state_dict(), 'LSTM4tagger.pkl')
testing_data = read_corpus('test')
#model.load_state_dict(torch.load('LSTM4tagger.pkl'))
total_count = 0
correct_count = 0
wrong_count = 0
for sentence, tags in testing_data:
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = prepare_sequence(tags, tag_to_ix)
#print (targets)
tag_scores, idx = model(sentence_in)
#print (idx)
#print (tag_scores)
for t in range(len(targets)):
total_count += 1
index = idx[t].data[0]
if targets[t].data[0] == index:
correct_count += 1
else:
wrong_count += 1
print('Correct: %d' % correct_count)
print('Wrong: %d' % wrong_count)
print('Total: %d' % total_count)
print('Performance: %f' % (float(correct_count)/float(total_count)))
end = datetime.datetime.now()
print (end - start)