-
Notifications
You must be signed in to change notification settings - Fork 103
/
CnnInYourOwnData.cs
639 lines (557 loc) · 24.9 KB
/
CnnInYourOwnData.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using SharpCV;
using System;
using System.Collections;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Tensorflow;
using Tensorflow.Keras.Utils;
using Tensorflow.NumPy;
using static SharpCV.Binding;
using static Tensorflow.Binding;
namespace TensorFlowNET.Examples;
/// <summary>
/// Convolutional Neural Network classifier for Local Classify Images.
/// CNN architecture with two convolutional layers, followed by two fully-connected layers at the end.
/// Use Stochastic Gradient Descent (SGD) optimizer.
/// Learning Rate reduces per 10 epochs.
/// TODO: Thread Queue will be added to improve images loading efficiency later.
/// https://www.easy-tensorflow.com/tf-tutorials/convolutional-neural-nets-cnns/cnn1
/// </summary>
class CnnInYourOwnData : SciSharpExample, IExample
{
string[] ArrayFileName_Train, ArrayFileName_Validation, ArrayFileName_Test;
long[] ArrayLabel_Train, ArrayLabel_Validation, ArrayLabel_Test;
Dictionary<long, string> Dict_Label;
NDArray y_train;
NDArray x_valid, y_valid;
NDArray x_test, y_test;
int img_h = 64;// MNIST images are 64x64
int img_w = 64;// MNIST images are 64x64
int img_mean = 0;
int img_std = 255;
int n_channels = 1;//Gray Image ,one channel
int n_classes;// Number of classes
Tensor x, y; // Placeholders for inputs (x) and outputs(y)
Tensor loss, accuracy, cls_prediction, prob;
Tensor optimizer;
Tensor normalized;
Tensor decodeJpeg;
int display_freq = 2;
float accuracy_test = 0f;
float loss_test = 1f;
// Network configuration
// 1st Convolutional Layer
int filter_size1 = 5; // Convolution filters are 5 x 5 pixels.
int num_filters1 = 16; // There are 16 of these filters.
int stride1 = 1; // The stride of the sliding window
// 2nd Convolutional Layer
int filter_size2 = 5; // Convolution filters are 5 x 5 pixels.
int num_filters2 = 32;// There are 32 of these filters.
int stride2 = 1; // The stride of the sliding window
// Fully-connected layer.
int h1 = 128; // Number of neurons in fully-connected layer.
// Hyper-parameters
int epochs = 5; // accuracy > 98%
int batch_size = 100;
float learning_rate_base = 0.001f;
float learning_rate_decay = 0.1f;
uint learning_rate_step = 2;
float learning_rate_min = 0.000001f;
NDArray Test_Cls, Test_Data;
IVariableV1 global_steps;
IVariableV1 learning_rate;
bool SaverBest = true;
double max_accuracy = 0;
string path_model;
int TrainQueueCapa = 3;
Session sess;
public ExampleConfig InitConfig()
=> Config = new ExampleConfig
{
Name = "CNN in Your Own Data (Graph)",
Enabled = true,
IsImportingGraph = false
};
public bool Run()
{
tf.compat.v1.disable_eager_execution();
PrepareData();
BuildGraph();
sess = tf.Session();
Train();
Test();
TestDataOutput();
FreezeModel();
LoadAndPredict();
return accuracy_test > 0.98;
}
public void LoadAndPredict()
{
var graph = tf.Graph().as_default();
graph.Import(Path.Combine(Config.Name, "model.pb"));
Tensor x = graph.OperationByName("Input/X");
Tensor prediction = graph.OperationByName("Train/Prediction/predictions");
Tensor probility = graph.OperationByName("Train/Prediction/prob");
var sess = tf.Session(graph);
var (prediction_result, probility_result) = sess.run((prediction, probility), (x, x_test));
print($"Prediction result: {prediction_result}");
}
public override string FreezeModel()
{
return tf.train.freeze_graph(Config.Name + "\\MODEL", "model", new[]
{
"Train/Prediction/predictions",
"Train/Prediction/prob"
});
}
#region PrepareData
public override void PrepareData()
{
string url = "https://github.com/SciSharp/SciSharp-Stack-Examples/raw/master/data/data_CnnInYourOwnData.zip";
Directory.CreateDirectory(Config.Name);
Web.Download(url, Config.Name, "data_CnnInYourOwnData.zip");
Compress.UnZip(Config.Name + "\\data_CnnInYourOwnData.zip", Config.Name);
FillDictionaryLabel(Config.Name + "\\train");
ArrayFileName_Train = Directory.GetFiles(Config.Name + "\\train", "*.*", SearchOption.AllDirectories);
ArrayLabel_Train = GetLabelArray(ArrayFileName_Train);
ArrayFileName_Validation = Directory.GetFiles(Config.Name + "\\validation", "*.*", SearchOption.AllDirectories);
ArrayLabel_Validation = GetLabelArray(ArrayFileName_Validation);
ArrayFileName_Test = Directory.GetFiles(Config.Name + "\\test", "*.*", SearchOption.AllDirectories);
ArrayLabel_Test = GetLabelArray(ArrayFileName_Test);
//shuffle array
(ArrayFileName_Train, ArrayLabel_Train) = ShuffleArray(ArrayLabel_Train.Length, ArrayFileName_Train, ArrayLabel_Train);
(ArrayFileName_Validation, ArrayLabel_Validation) = ShuffleArray(ArrayLabel_Validation.Length, ArrayFileName_Validation, ArrayLabel_Validation);
(ArrayFileName_Test, ArrayLabel_Test) = ShuffleArray(ArrayLabel_Test.Length, ArrayFileName_Test, ArrayLabel_Test);
LoadImagesToNDArray();
}
/// <summary>
/// Load Validation and Test data to NDarray, Train data is too large ,we load by training process
/// </summary>
private void LoadImagesToNDArray()
{
//Load labels
y_valid = np.eye(Dict_Label.Count, dtype: tf.float32)[np.array(ArrayLabel_Validation)];
y_test = np.eye(Dict_Label.Count, dtype: tf.float32)[np.array(ArrayLabel_Test)];
print("Load Labels To NDArray : OK!");
//Load Images
x_valid = np.zeros((ArrayFileName_Validation.Length, img_h, img_w, n_channels), dtype: tf.float32);
x_test = np.zeros((ArrayFileName_Test.Length, img_h, img_w, n_channels), dtype: tf.float32);
LoadImage(ArrayFileName_Validation, x_valid, "validation");
LoadImage(ArrayFileName_Test, x_test, "test");
print("Loading images finished!");
}
private void LoadImage(string[] a, NDArray b, string c)
{
var graph = tf.Graph().as_default();
for (int i = 0; i < a.Length; i++)
{
b[i] = ReadTensorFromImageFile(a[i], graph);
Console.Write($"Loading image: {a[i]}...");
Console.CursorLeft = 0;
}
Console.WriteLine();
Console.WriteLine($"Loaded {a.Length} images for " + c);
}
private NDArray ReadTensorFromImageFile(string file_name, Graph graph)
{
var file_reader = tf.io.read_file(file_name, "file_reader");
var decodeJpeg = tf.image.decode_jpeg(file_reader, channels: n_channels, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { img_h, img_w });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { img_mean });
var normalized = tf.divide(sub, new float[] { img_std });
var sess = tf.Session(graph);
return sess.run(normalized);
}
/// <summary>
/// Shuffle Images and Labels Array
/// </summary>
/// <param name="count"></param>
/// <param name="images"></param>
/// <param name="labels"></param>
/// <returns></returns>
public (string[], long[]) ShuffleArray(int count, string[] images, long[] labels)
{
ArrayList mylist = new ArrayList();
string[] new_images = new string[count];
long[] new_labels = new long[count];
Random r = new Random();
for (int i = 0; i < count; i++)
{
mylist.Add(i);
}
for (int i = 0; i < count; i++)
{
int rand = r.Next(mylist.Count);
new_images[i] = images[(int)(mylist[rand])];
new_labels[i] = labels[(int)(mylist[rand])];
mylist.RemoveAt(rand);
}
print("shuffle array list: " + count.ToString());
return (new_images, new_labels);
}
/// <summary>
/// Get Label Array with Dictionary
/// </summary>
/// <param name="FilesArray"></param>
/// <returns></returns>
private long[] GetLabelArray(string[] FilesArray)
{
var ArrayLabel = new long[FilesArray.Length];
for (int i = 0; i < ArrayLabel.Length; i++)
{
string[] labels = FilesArray[i].Split('\\');
string label = labels[labels.Length - 2];
ArrayLabel[i] = Dict_Label.Single(k => k.Value == label).Key;
}
return ArrayLabel;
}
/// <summary>
/// Get Dictionary , Key is Order Number , Value is Label
/// </summary>
/// <param name="DirPath"></param>
private void FillDictionaryLabel(string DirPath)
{
string[] str_dir = Directory.GetDirectories(DirPath, "*", SearchOption.TopDirectoryOnly);
int str_dir_num = str_dir.Length;
if (str_dir_num > 0)
{
Dict_Label = new Dictionary<Int64, string>();
for (int i = 0; i < str_dir_num; i++)
{
string label = (str_dir[i].Replace(DirPath + "\\", "")).Split('\\').First();
Dict_Label.Add(i, label);
print(i.ToString() + " : " + label);
}
n_classes = Dict_Label.Count;
}
}
#endregion
#region BuildGraph
public override Graph BuildGraph()
{
var graph = new Graph().as_default();
tf_with(tf.name_scope("Input"), delegate
{
x = tf.placeholder(tf.float32, shape: (-1, img_h, img_w, n_channels), name: "X");
y = tf.placeholder(tf.float32, shape: (-1, n_classes), name: "Y");
});
var conv1 = conv_layer(x, filter_size1, num_filters1, stride1, name: "conv1");
var pool1 = max_pool(conv1, ksize: 2, stride: 2, name: "pool1");
var conv2 = conv_layer(pool1, filter_size2, num_filters2, stride2, name: "conv2");
var pool2 = max_pool(conv2, ksize: 2, stride: 2, name: "pool2");
var layer_flat = flatten_layer(pool2);
var fc1 = fc_layer(layer_flat, h1, "FC1", use_relu: true);
var output_logits = fc_layer(fc1, n_classes, "OUT", use_relu: false);
//Some important parameter saved with graph , easy to load later
//var img_h_t = tf.constant(img_h, name: "img_h");
//var img_w_t = tf.constant(img_w, name: "img_w");
//var img_mean_t = tf.constant(img_mean, name: "img_mean");
//var img_std_t = tf.constant(img_std, name: "img_std");
//var channels_t = tf.constant(n_channels, name: "img_channels");
//learning rate decay
global_steps = tf.Variable(0, trainable: false);
learning_rate = tf.Variable(learning_rate_base);
//create train images graph
tf_with(tf.variable_scope("LoadImage"), delegate
{
decodeJpeg = tf.placeholder(tf.byte8, name: "DecodeJpeg");
var cast = tf.cast(decodeJpeg, tf.float32);
var dims_expander = tf.expand_dims(cast, 0);
var resize = tf.constant(new int[] { img_h, img_w });
var bilinear = tf.image.resize_bilinear(dims_expander, resize);
var sub = tf.subtract(bilinear, new float[] { img_mean });
normalized = tf.divide(sub, new float[] { img_std }, name: "normalized");
});
tf_with(tf.variable_scope("Train"), delegate
{
tf_with(tf.variable_scope("Loss"), delegate
{
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels: y, logits: output_logits), name: "loss");
});
tf_with(tf.variable_scope("Optimizer"), delegate
{
optimizer = tf.train.AdamOptimizer(learning_rate: learning_rate, name: "Adam-op").minimize(loss, global_step: global_steps);
});
tf_with(tf.variable_scope("Accuracy"), delegate
{
var correct_prediction = tf.equal(tf.math.argmax(output_logits, 1), tf.math.argmax(y, 1), name: "correct_pred");
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name: "accuracy");
});
tf_with(tf.variable_scope("Prediction"), delegate
{
cls_prediction = tf.math.argmax(output_logits, axis: 1, name: "predictions");
prob = tf.nn.softmax(output_logits, axis: 1, name: "prob");
});
});
return graph;
}
/// <summary>
/// Create a 2D convolution layer
/// </summary>
/// <param name="x">input from previous layer</param>
/// <param name="filter_size">size of each filter</param>
/// <param name="num_filters">number of filters(or output feature maps)</param>
/// <param name="stride">filter stride</param>
/// <param name="name">layer name</param>
/// <returns>The output array</returns>
private Tensor conv_layer(Tensor x, int filter_size, int num_filters, int stride, string name)
{
return tf_with(tf.variable_scope(name), delegate
{
var num_in_channel = x.shape[x.ndim - 1];
var shape = new int[] { filter_size, filter_size, (int)num_in_channel, num_filters };
var W = weight_variable("W", shape);
// var tf.summary.histogram("weight", W);
var b = bias_variable("b", new[] { num_filters });
// tf.summary.histogram("bias", b);
var layer = tf.nn.conv2d(x, W.AsTensor(),
strides: new int[] { 1, stride, stride, 1 },
padding: "SAME");
layer += b.AsTensor();
return tf.nn.relu(layer);
});
}
/// <summary>
/// Create a max pooling layer
/// </summary>
/// <param name="x">input to max-pooling layer</param>
/// <param name="ksize">size of the max-pooling filter</param>
/// <param name="stride">stride of the max-pooling filter</param>
/// <param name="name">layer name</param>
/// <returns>The output array</returns>
private Tensor max_pool(Tensor x, int ksize, int stride, string name)
{
return tf.nn.max_pool(x,
ksize: new[] { 1, ksize, ksize, 1 },
strides: new[] { 1, stride, stride, 1 },
padding: "SAME",
name: name);
}
/// <summary>
/// Flattens the output of the convolutional layer to be fed into fully-connected layer
/// </summary>
/// <param name="layer">input array</param>
/// <returns>flattened array</returns>
private Tensor flatten_layer(Tensor layer)
{
return tf_with(tf.variable_scope("Flatten_layer"), delegate
{
var layer_shape = layer.shape;
var num_features = layer_shape[new Slice(1, 4)].size;
var layer_flat = tf.reshape(layer, new[] { -1, num_features });
return layer_flat;
});
}
/// <summary>
/// Create a weight variable with appropriate initialization
/// </summary>
/// <param name="name"></param>
/// <param name="shape"></param>
/// <returns></returns>
private IVariableV1 weight_variable(string name, int[] shape)
{
var initer = tf.truncated_normal_initializer(stddev: 0.01f);
return tf.compat.v1.get_variable(name,
dtype: tf.float32,
shape: shape,
initializer: initer);
}
/// <summary>
/// Create a bias variable with appropriate initialization
/// </summary>
/// <param name="name"></param>
/// <param name="shape"></param>
/// <returns></returns>
private IVariableV1 bias_variable(string name, int[] shape)
{
var initial = tf.constant(0f, shape: shape, dtype: tf.float32);
return tf.compat.v1.get_variable(name,
dtype: tf.float32,
initializer: initial);
}
/// <summary>
/// Create a fully-connected layer
/// </summary>
/// <param name="x">input from previous layer</param>
/// <param name="num_units">number of hidden units in the fully-connected layer</param>
/// <param name="name">layer name</param>
/// <param name="use_relu">boolean to add ReLU non-linearity (or not)</param>
/// <returns>The output array</returns>
private Tensor fc_layer(Tensor x, int num_units, string name, bool use_relu = true)
{
return tf_with(tf.variable_scope(name), delegate
{
var in_dim = x.shape[1];
var W = weight_variable("W_" + name, shape: new[] { (int)in_dim, num_units });
var b = bias_variable("b_" + name, new[] { num_units });
var layer = tf.matmul(x, W.AsTensor()) + b.AsTensor();
if (use_relu)
layer = tf.nn.relu(layer);
return layer;
});
}
#endregion
#region Train
public override void Train()
{
// Number of training iterations in each epoch
var num_tr_iter = (ArrayLabel_Train.Length) / batch_size;
var init = tf.global_variables_initializer();
sess.run(init);
var saver = tf.train.Saver(tf.global_variables(), max_to_keep: 10);
path_model = Config.Name + "\\MODEL";
Directory.CreateDirectory(path_model);
float loss_val = 100.0f;
float accuracy_val = 0f;
var sw = new Stopwatch();
sw.Start();
foreach (var epoch in range(epochs))
{
print($"Training epoch: {epoch + 1}");
// Randomly shuffle the training data at the beginning of each epoch
(ArrayFileName_Train, ArrayLabel_Train) = ShuffleArray(ArrayLabel_Train.Length, ArrayFileName_Train, ArrayLabel_Train);
y_train = np.eye(Dict_Label.Count, dtype: tf.float32)[new NDArray(ArrayLabel_Train)];
//decay learning rate
if (learning_rate_step != 0)
{
if ((epoch != 0) && (epoch % learning_rate_step == 0))
{
learning_rate_base = learning_rate_base * learning_rate_decay;
if (learning_rate_base <= learning_rate_min) { learning_rate_base = learning_rate_min; }
sess.run(tf.assign(learning_rate, learning_rate_base));
}
}
//Load local images asynchronously,use queue,improve train efficiency
BlockingCollection<(NDArray c_x, NDArray c_y, int iter)> BlockC = new BlockingCollection<(NDArray C1, NDArray C2, int iter)>(TrainQueueCapa);
Task.Run(() =>
{
foreach (var iteration in range(num_tr_iter))
{
var start = iteration * batch_size;
var end = (iteration + 1) * batch_size;
(NDArray x_batch, NDArray y_batch) = GetNextBatch(sess, ArrayFileName_Train, y_train, start, end);
BlockC.Add((x_batch, y_batch, iteration));
}
BlockC.CompleteAdding();
});
foreach (var item in BlockC.GetConsumingEnumerable())
{
sess.run(optimizer, (x, item.c_x), (y, item.c_y));
if (item.iter % display_freq == 0)
{
// Calculate and display the batch loss and accuracy
var result = sess.run(new[] { loss, accuracy }, new FeedItem(x, item.c_x), new FeedItem(y, item.c_y));
loss_val = result[0];
accuracy_val = result[1];
print("CNN:" + ($"iter {item.iter.ToString("000")}: Loss={loss_val.ToString("0.0000")}, Training Accuracy={accuracy_val.ToString("P")} {sw.ElapsedMilliseconds}ms"));
sw.Restart();
}
}
// Run validation after every epoch
(loss_val, accuracy_val) = sess.run((loss, accuracy), (x, x_valid), (y, y_valid));
print("CNN:" + "---------------------------------------------------------");
print("CNN:" + $"global steps: {sess.run(global_steps)[0]}, learning rate: {sess.run(learning_rate)[0]}, validation loss: {loss_val.ToString("0.0000")}, validation accuracy: {accuracy_val.ToString("P")}");
print("CNN:" + "---------------------------------------------------------");
if (SaverBest)
{
if (accuracy_val > max_accuracy)
{
max_accuracy = accuracy_val;
saver.save(sess, path_model + "\\CNN_Best");
print("CKPT Model is saved.");
}
}
else
{
saver.save(sess, path_model + string.Format("\\CNN_Epoch_{0}_Loss_{1}_Acc_{2}", epoch, loss_val, accuracy_val));
print("CKPT Model is saved.");
}
}
Write_Dictionary(path_model + "\\dic.txt", Dict_Label);
}
void Write_Dictionary(string path, Dictionary<Int64, string> mydic)
{
FileStream fs = new FileStream(path, FileMode.Create);
StreamWriter sw = new StreamWriter(fs);
foreach (var d in mydic) { sw.Write(d.Key + "," + d.Value + "\r\n"); }
sw.Flush();
sw.Close();
fs.Close();
print("Write_Dictionary");
}
(NDArray, NDArray) Randomize(NDArray x, NDArray y)
{
var perm = np.random.permutation((int)y.shape[0]);
np.random.shuffle(perm);
return (x[perm], y[perm]);
}
(NDArray, NDArray) GetNextBatch(NDArray x, NDArray y, int start, int end)
{
var slice = new Slice(start, end);
var x_batch = x[slice];
var y_batch = y[slice];
return (x_batch, y_batch);
}
(NDArray, NDArray) GetNextBatch(Session sess, string[] x, NDArray y, int start, int end)
{
NDArray x_batch = np.zeros((end - start, img_h, img_w, n_channels), dtype: tf.float32);
int n = 0;
for (int i = start; i < end; i++)
{
NDArray img4 = cv2.imread(x[i], IMREAD_COLOR.IMREAD_GRAYSCALE);
img4 = img4.reshape((img4.shape[0], img4.shape[1], 1));
x_batch[n] = sess.run(normalized, (decodeJpeg, img4));
n++;
}
var slice = new Slice(start, end);
var y_batch = y[slice];
return (x_batch, y_batch);
}
#endregion
public override void Test()
{
(loss_test, accuracy_test) = sess.run((loss, accuracy), (x, x_test), (y, y_test));
print("CNN:" + "---------------------------------------------------------");
print("CNN:" + $"Test loss: {loss_test.ToString("0.0000")}, test accuracy: {accuracy_test.ToString("P")}");
print("CNN:" + "---------------------------------------------------------");
(Test_Cls, Test_Data) = sess.run((cls_prediction, prob), (x, x_test));
}
void TestDataOutput()
{
for (int i = 0; i < ArrayLabel_Test.Length; i++)
{
long real = ArrayLabel_Test[i];
int predict = Test_Cls[i];
var probability = Test_Data[i, predict];
string result = (real == predict) ? "OK" : "FAILED";
string fileName = ArrayFileName_Test[i];
string real_str = Dict_Label[real];
string predict_str = Dict_Label[predict];
if (result != "OK")
{
print((i + 1).ToString() + "|" + "result:" + result + "|" + "real_str:" + real_str + "|"
+ "predict_str:" + predict_str + "|" + "probability:" + (float)probability + "|"
+ "fileName:" + fileName);
}
}
}
}