forked from cadCAD-org/cadCAD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sys_model_B.py
157 lines (134 loc) · 3.43 KB
/
sys_model_B.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
from datetime import timedelta
from cadCAD.configuration.utils import bound_norm_random, config_sim, env_trigger, time_step
from cadCAD.configuration import Experiment
from documentation.examples import system_model_AB_exp
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Policies per Mechanism
def p1m1(_g, step, sH, s):
return {'param1': 1}
def p2m1(_g, step, sH, s):
return {'param2': 4}
def p1m2(_g, step, sH, s):
return {'param1': 'a', 'param2': 2}
def p2m2(_g, step, sH, s):
return {'param1': 'b', 'param2': 4}
def p1m3(_g, step, sH, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def p2m3(_g, step, sH, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sH, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(_g, step, sH, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(_g, step, sH, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3(_g, step, sH, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4(_g, step, sH, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def update_timestamp(_g, step, sH, s, _input):
y = 'timestamp'
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
# Genesis States
genesis_states = {
's1': 0,
's2': 0,
's3': 1,
's4': 1,
'timestamp': '2018-10-01 15:16:24'
}
# Environment Process
trigger_timestamps = ['2018-10-01 15:16:25', '2018-10-01 15:16:27', '2018-10-01 15:16:29']
env_processes = {
"s3": [lambda _g, x: 5],
"s4": env_trigger(3)(trigger_field='timestamp', trigger_vals=trigger_timestamps, funct_list=[lambda _g, x: 10])
}
psubs = [
{
"policies": {
"b1": p1m1,
# "b2": p2m1
},
"states": {
"s1": s1m1,
# "s2": s2m1
"s3": es3,
"s4": es4,
"timestep": update_timestamp
}
},
{
"policies": {
"b1": p1m2,
# "b2": p2m2
},
"states": {
"s1": s1m2,
# "s2": s2m2
}
},
{
"policies": {
"b1": p1m3,
"b2": p2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
]
sim_config = config_sim(
{
"N": 2,
"T": range(5),
}
)
exp = Experiment()
exp.append_model(
model_id='sys_model_B',
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=psubs
)
system_model_AB_exp.append_model(
model_id='sys_model_B',
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=psubs,
policy_ops=[lambda a, b: a + b]
)