forked from trekhleb/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
kNN.js
60 lines (54 loc) · 1.89 KB
/
kNN.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/**
* Classifies the point in space based on k-nearest neighbors algorithm.
*
* @param {number[][]} dataSet - array of data points, i.e. [[0, 1], [3, 4], [5, 7]]
* @param {number[]} labels - array of classes (labels), i.e. [1, 1, 2]
* @param {number[]} toClassify - the point in space that needs to be classified, i.e. [5, 4]
* @param {number} k - number of nearest neighbors which will be taken into account (preferably odd)
* @return {number} - the class of the point
*/
import euclideanDistance from '../../math/euclidean-distance/euclideanDistance';
export default function kNN(
dataSet,
labels,
toClassify,
k = 3,
) {
if (!dataSet || !labels || !toClassify) {
throw new Error('Either dataSet or labels or toClassify were not set');
}
// Calculate distance from toClassify to each point for all dimensions in dataSet.
// Store distance and point's label into distances list.
const distances = [];
for (let i = 0; i < dataSet.length; i += 1) {
distances.push({
dist: euclideanDistance([dataSet[i]], [toClassify]),
label: labels[i],
});
}
// Sort distances list (from closer point to further ones).
// Take initial k values, count with class index
const kNearest = distances.sort((a, b) => {
if (a.dist === b.dist) {
return 0;
}
return a.dist < b.dist ? -1 : 1;
}).slice(0, k);
// Count the number of instances of each class in top k members.
const labelsCounter = {};
let topClass = 0;
let topClassCount = 0;
for (let i = 0; i < kNearest.length; i += 1) {
if (kNearest[i].label in labelsCounter) {
labelsCounter[kNearest[i].label] += 1;
} else {
labelsCounter[kNearest[i].label] = 1;
}
if (labelsCounter[kNearest[i].label] > topClassCount) {
topClassCount = labelsCounter[kNearest[i].label];
topClass = kNearest[i].label;
}
}
// Return the class with highest count.
return topClass;
}