forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imqa.py
27 lines (24 loc) · 1.08 KB
/
imqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
"""
Image Question Answering Schema
"""
import datasets
features = datasets.Features(
{
"id": datasets.Value("string"),
"question_id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"questions": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string"),
"choices": datasets.Sequence(datasets.Value("string")),
"context": datasets.Value("string"),
"answer": datasets.Sequence(datasets.Value("string")),
"image_paths": datasets.Sequence(datasets.Value("string")),
# the schema of 'meta' aren't specified either to allow some flexibility
"meta": {}
# notes on how to use this field of 'meta'
# you can choose two of options:
# 1. defining as empty dict if you don't think it's usable in `_generate_examples`, or
# 2. defining meta as dict of key with intended colname meta and its val with dataset.Features class
# in `_info` Dataloader method then populate it with the values in `_general_examples` Dataloader method
}
)