forked from idstcv/ZenNAS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
global_utils.py
294 lines (237 loc) · 12.6 KB
/
global_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
'''
Copyright (C) 2010-2021 Alibaba Group Holding Limited.
'''
import os
import distutils.dir_util
import pprint, ast, argparse, logging
import numpy as np
import torch
def load_py_module_from_path(module_path, module_name=None):
if module_path.find(':') > 0:
split_path = module_path.split(':')
module_path = split_path[0]
function_name = split_path[1]
else:
function_name = None
if module_name is None:
module_name = module_path.replace('/', '_').replace('.', '_')
assert os.path.isfile(module_path)
import importlib.util
spec = importlib.util.spec_from_file_location(module_name, module_path)
any_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(any_module)
if function_name is None:
return any_module
else:
return getattr(any_module, function_name)
def mkfilepath(filename):
distutils.dir_util.mkpath(os.path.dirname(filename))
def mkdir(dirname):
distutils.dir_util.mkpath(dirname)
def smart_round(x, base=None):
if base is None:
if x > 32 * 8:
round_base = 32
elif x > 16 * 8:
round_base = 16
else:
round_base = 8
else:
round_base = base
return max(round_base, round(x / float(round_base)) * round_base)
def save_pyobj(filename, pyobj):
mkfilepath(filename)
the_s = pprint.pformat(pyobj, indent=2, width=120, compact=True)
with open(filename, 'w') as fid:
fid.write(the_s)
def load_pyobj(filename):
with open(filename, 'r') as fid:
the_s = fid.readlines()
if isinstance(the_s, list):
the_s = ''.join(the_s)
the_s = the_s.replace('inf', '1e20')
pyobj = ast.literal_eval(the_s)
return pyobj
def parse_cmd_options(argv):
parser = argparse.ArgumentParser(description='Default command line parser.')
parser.add_argument('--evaluate_only', action='store_true', help='Only evaluation.')
# apex support
parser.add_argument('--apex', action='store_true', help='Mixed precision training using apex.')
parser.add_argument('--apex_loss_scale', type=str, default='dynamic', help='loss scale for apex.')
parser.add_argument('--apex_opt_level', type=str, default='O1')
parser.add_argument('--fp16', action='store_true', help='Using FP16.')
# distributed training
parser.add_argument('--dist_mode', type=str, default='cpu', help='Distribution mode, could be cpu, single, horovod, mpi, auto.')
parser.add_argument('--independent_training', action='store_true', help='When distributed training, use each gpu separately.')
parser.add_argument('--world-size', default=1, type=int, help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use. Used by torch.distributed package')
parser.add_argument('--sync_bn', action='store_true', help='Use synchronized BN.')
parser.add_argument('--num_job_splits', default=None, type=str, help='Split jobs into multiple groups.')
parser.add_argument('--job_id', default=None, type=int, help='The id of this job node.')
# horovod setting
parser.add_argument('--fp16_allreduce', action='store_true', help='use fp16 compression during allreduce.')
parser.add_argument('--batches_per_allreduce',
type=int,
default=1,
help='number of batches processed locally before '
'executing allreduce across workers; it multiplies '
'total batch size.')
# learning rate setting
parser.add_argument('--lr', default=None, type=float, help='initial learning rate per 256 batch size')
parser.add_argument('--target_lr', default=None, type=float, help='target learning rate')
parser.add_argument('--lr_per_256', default=0.1, type=float, help='initial learning rate per 256 batch size')
parser.add_argument('--target_lr_per_256', default=0.0, type=float, help='target learning rate')
parser.add_argument('--lr_mode', default=None, type=str, help='learning rate decay mode.')
parser.add_argument('--warmup', default=0, type=int, help='epochs for warmup.')
parser.add_argument('--epoch_offset', default=0.0, type=float, help='Make the learning rate decaying as epochs + epoch_offset but start from epoch_offset. ')
parser.add_argument('--lr_stage_list', default=None, type=str, help='stage-wise learning epoch list.')
parser.add_argument('--lr_stage_decay', default=None, type=float, help='stage-wise learning epoch list.')
# optimizer
parser.add_argument('--optimizer', default='sgd', type=str, help='sgd optimizer')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--adadelta_rho', default=0.9, type=float)
parser.add_argument('--adadelta_eps', default=1e-9, type=float)
parser.add_argument('--wd',
'--weight_decay',
default=4e-5,
type=float,
help='weight decay (default: 4e-5)',
dest='weight_decay')
# training settings
parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--auto_resume', action='store_true', help='auto resume from latest check point')
parser.add_argument('--load_parameters_from', default=None, type=str, help='Only load parameters from pth file.')
parser.add_argument('--strict_load', action='store_true', help='Mixed precision training using apex.')
parser.add_argument('--start_epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--save_dir', default=None, type=str, help='where to save models.')
parser.add_argument('--save_freq', default=10, type=int, help='How many epochs to save a model.')
parser.add_argument('--print_freq', default=100, type=int, help='print frequency (default: 100)')
# training tricks
parser.add_argument('--label_smoothing', action='store_true')
parser.add_argument('--weight_init', type=str, default='None', help='How to initialize parameters')
parser.add_argument('--nesterov', action='store_true')
parser.add_argument('--grad_clip', type=float, default=None)
# BN layer
parser.add_argument('--bn_momentum', type=float, default=None)
parser.add_argument('--bn_eps', type=float, default=None)
# data augmentation
parser.add_argument('--mixup', action='store_true')
parser.add_argument('--random_erase', action='store_true')
parser.add_argument('--auto_augment', action='store_true')
parser.add_argument('--no_data_augment', action='store_true')
# for loading dataset
parser.add_argument('--data_dir', type=str, default=None, help='path to dataset')
parser.add_argument('--dataset', type=str, default=None, help='name of the dataset')
parser.add_argument('--workers_per_gpu',
default=6,
type=int,
help='number of data loading workers per gpu. default 6.')
parser.add_argument(
'--batch_size',
default=None,
type=int,
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel',
)
parser.add_argument('--batch_size_per_gpu', default=None, type=int, help='batch size per GPU.')
parser.add_argument('--auto_batch_size', action='store_true', help='allow adjust batch size smartly.')
parser.add_argument('--num_cv_folds', type=int, default=None, help='Number of cross-validation folds.')
parser.add_argument('--cv_id', type=int, default=None, help='Current ID of cross-validation fold.')
parser.add_argument('--input_image_size', type=int, default=224, help='input image size.')
parser.add_argument('--input_image_crop', type=float, default=0.875, help='crop ratio of input image')
# for loading model
parser.add_argument('--arch', default=None, help='model names/module to load')
parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model')
parser.add_argument('--num_classes', type=int, default=None, help='number of classes.')
# for testing
parser.add_argument('--dataloader_testing', action='store_true', help='Testing data loader.')
# for teacher-student distillation
parser.add_argument('--teacher_input_image_size', type=int, default=None)
parser.add_argument('--teacher_arch', type=str, default=None)
parser.add_argument('--teacher_pretrained', action='store_true')
parser.add_argument('--ts_proj_no_relu', action='store_true')
parser.add_argument('--ts_proj_no_bn', action='store_true')
parser.add_argument('--teacher_load_parameters_from', type=str, default=None)
parser.add_argument('--teacher_feature_weight', type=float, default=None)
parser.add_argument('--teacher_logit_weight', type=float, default=None)
parser.add_argument('--ts_clip', type=float, default=None)
parser.add_argument('--target_downsample_ratio', type=int, default=None)
opt, _ = parser.parse_known_args(argv)
return opt
def create_logging(log_filename=None, level=logging.INFO):
if log_filename is not None:
mkfilepath(log_filename)
logging.basicConfig(
level=level,
format="%(message)s",
handlers=[
logging.FileHandler(log_filename),
logging.StreamHandler()
]
)
else:
logging.basicConfig(
level=level,
format="%(message)s",
handlers=[
logging.StreamHandler()
]
)
class LearningRateScheduler():
def __init__(self,
mode,
lr,
target_lr=None,
num_training_instances=None,
stop_epoch=None,
warmup_epoch=None,
stage_list=None,
stage_decay=None,
):
self.mode = mode
self.lr = lr
self.target_lr = target_lr if target_lr is not None else 0
self.num_training_instances = num_training_instances if num_training_instances is not None else 1
self.stop_epoch = stop_epoch if stop_epoch is not None else np.inf
self.warmup_epoch = warmup_epoch if warmup_epoch is not None else 0
self.stage_list = stage_list if stage_list is not None else None
self.stage_decay = stage_decay if stage_decay is not None else 0
self.num_received_training_instances = 0
if self.stage_list is not None:
self.stage_list = [int(x) for x in self.stage_list.split(',')]
def update_lr(self, batch_size):
self.num_received_training_instances += batch_size
def get_lr(self, num_received_training_instances=None):
if num_received_training_instances is None:
num_received_training_instances = self.num_received_training_instances
# start_instances = self.num_training_instances * self.start_epoch
stop_instances = self.num_training_instances * self.stop_epoch
warmup_instances = self.num_training_instances * self.warmup_epoch
assert stop_instances > warmup_instances
current_epoch = self.num_received_training_instances // self.num_training_instances
if num_received_training_instances < warmup_instances:
return float(num_received_training_instances + 1) / float(warmup_instances) * self.lr
ratio_epoch = float(num_received_training_instances - warmup_instances + 1) / \
float(stop_instances - warmup_instances)
if self.mode == 'cosine':
factor = (1 - np.math.cos(np.math.pi * ratio_epoch)) / 2.0
return self.lr + (self.target_lr - self.lr) * factor
elif self.mode == 'stagedecay':
stage_lr = self.lr
for stage_epoch in self.stage_list:
if current_epoch <= stage_epoch:
return stage_lr
else:
stage_lr *= self.stage_decay
pass # end if
pass # end for
return stage_lr
elif self.mode == 'linear':
factor = ratio_epoch
return self.lr + (self.target_lr - self.lr) * factor
else:
raise RuntimeError('Unknown learning rate mode: ' + self.mode)
pass # end if