-
Notifications
You must be signed in to change notification settings - Fork 0
/
singleFace.py
81 lines (77 loc) · 2.72 KB
/
singleFace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import cv2
import sys
from em_model import EMR
import numpy as np
EMOTIONS = ['angry', 'disgusted', 'fearful',
'happy', 'sad', 'surprised', 'neutral']
cascade_classifier =
cv2.CascadeClassifier('haarcascade_files/haarcascade_frontalface_default.xml')
def format_image(image):
"""
Function to format frame
"""
if len(image.shape) > 2 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
faces = cascade_classifier.detectMultiScale(image, scaleFactor=1.3, minNeighbors=if not len(faces) > 0:
return None
max_area_face=faces[0]
for face in faces:
if face[2] * face[3] > max_area_face[2] * max_area_face[3]:
max_area_face=face
face=max_area_face
image=image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]
try:
image=cv2.resize(image, (48, 48), interpolation=cv2.INTER_CUBIC) / 255.
except Exception:
print("----->Problem during resize")
return None
return image
network=EMR()
network.build_network()
cap=cv2.VideoCapture(0)
font=cv2.FONT_HERSHEY_SIMPLEX
feelings_faces=[]
for index, emotion in enumerate(EMOTIONS):
feelings_faces.append(cv2.imread('./emojis/' + emotion + '.png', -1))
while True:
ret, frame=cap.read()
facecasc=cv2.CascadeClassifier(
'haarcascade_files/haarcascade_frontalface_default.xml')
gray=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces=facecasc.detectMultiScale(gray, 1.3, 5)
result=network.predict(format_image(frame))
if result is not None:
# write the different emotions and have a bar to indicate probabilities for each class
for index, emotion in enumerate(EMOTIONS): cv2.putText(frame, emotion, (10, index * 20 + 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1);
cv2.rectangle(frame, (130, index * 20 + 10), (130 + int(result[0][index] * 100), (index
+ 1) * 20 + 4), (255, 0, 0), -1)
# find the emotion with maximum probability and display it
maxindex=np.argmax(result[0])
font=cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(frame, EMOTIONS[maxindex], (10, 360), font,
2, (255, 255, 255), 2, cv2.LINE_AA)
face_image=feelings_faces[maxindex]
print(face_image[:, :, 3])
for c in range(0, 3):
frame[200:320, 10:130, c]=face_image[:, :, c] * (face_image[:, :, 3] / 255.0) +
frame[200:320, 10:130, c] * (1.0 - face_image[:, :, 3] / 255.0)
if not len(faces) > 0:
# do nothing if no face is detected
a=1
else:
# draw box around face with maximum area
max_area_face=faces[0]
for face in faces:
if face[2] * face[3] > max_area_face[2] * max_area_face[3]:
max_area_face=face
face=max_area_face
(x, y, w, h)=max_area_face
frame=cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (255, 0, 0), 2)
cv2.imshow('Video', cv2.resize(frame, None, fx=2,
fy=2, interpolation=cv2.INTER_CUBIC))
if cv2.waitKey(1) & 0xFF == ord('q'):
breakcap.release()
cv2.destroyAllWindows()