Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closes #116 | Add pho_ner_covid Dataloader #461

Merged
merged 6 commits into from
Mar 12, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
203 changes: 203 additions & 0 deletions seacrowd/sea_datasets/pho_ner_covid/pho_ner_covid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Tuple

import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks

_CITATION = """\
@inproceedings{PhoNER_COVID19,
title = {{COVID-19 Named Entity Recognition for Vietnamese}},
author = {Thinh Hung Truong and Mai Hoang Dao and Dat Quoc Nguyen},
booktitle = {Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
year = {2021}
}
"""

_DATASETNAME = "pho_ner_covid"

_DESCRIPTION = """\
A named entity recognition dataset for Vietnamese with 10 newly-defined entity types in the context of the COVID-19 pandemic.
Data is extracted from news articles and manually annotated. In total, there are 34 984 entities over 10 027 sentences.
"""

_HOMEPAGE = "https://github.com/VinAIResearch/PhoNER_COVID19/tree/main"

_LANGUAGES = ["vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)

_LICENSE = Licenses.UNKNOWN.value

_LOCAL = False

_URLS = {
_DATASETNAME: {
"word_level": {
"dev": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/word/dev_word.json",
"train": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/word/train_word.json",
"test": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/word/test_word.json",
},
"syllable_level": {
"dev": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/syllable/dev_syllable.json",
"train": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/syllable/train_syllable.json",
"test": "https://raw.githubusercontent.com/VinAIResearch/PhoNER_COVID19/main/data/syllable/test_syllable.json",
},
}
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS]

_SUBSETS = ["word_level", "syllable_level"]
_SPLITS = ["train", "dev", "test"]
_TAGS = [
"O",
"B-ORGANIZATION",
"I-ORGANIZATION",
"B-SYMPTOM_AND_DISEASE",
"I-SYMPTOM_AND_DISEASE",
"B-LOCATION",
"B-DATE",
"B-PATIENT_ID",
"B-AGE",
"B-NAME",
"I-DATE",
"B-JOB",
"I-LOCATION",
"B-TRANSPORTATION",
"B-GENDER",
"I-TRANSPORTATION",
"I-JOB",
"I-NAME",
"I-AGE",
"I-PATIENT_ID",
"I-GENDER"
]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "1.0.0"


class PhoNerCovid(datasets.GeneratorBasedBuilder):
Enliven26 marked this conversation as resolved.
Show resolved Hide resolved
"""A named entity recognition dataset for Vietnamese with 10 newly-defined entity types in the context of the COVID-19 pandemic."""

SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

BUILDER_CONFIGS = []

for subset_id in _SUBSETS:
BUILDER_CONFIGS.append(
SEACrowdConfig(
name=f"{subset_id}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=subset_id,
)
)

seacrowd_schema_config: list[SEACrowdConfig] = []

for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS:

seacrowd_schema_config.append(
SEACrowdConfig(
name=f"{subset_id}_{seacrowd_schema}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} {seacrowd_schema} schema",
schema=f"{seacrowd_schema}",
subset_id=subset_id,
)
)

BUILDER_CONFIGS.extend(seacrowd_schema_config)

DEFAULT_CONFIG_NAME = f"{_SUBSETS[0]}_source"

def _info(self) -> datasets.DatasetInfo:

if self.config.schema == "source":
features = datasets.Features(
{
"words": datasets.Sequence(datasets.Value("string")),
"tags": datasets.Sequence(datasets.ClassLabel(names=_TAGS)),
}
)

elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.NAMED_ENTITY_RECOGNITION]).lower()}":
features = schemas.seq_label_features(label_names=_TAGS)

else:
raise ValueError(f"Invalid config: {self.config.name}")

return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)

def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""

split_generators = []

for split in _SPLITS:
path = dl_manager.download_and_extract(_URLS[_DATASETNAME][self.config.subset_id][split])

split_generators.append(
datasets.SplitGenerator(
name=split,
gen_kwargs={
"path": path,
},
)
)

return split_generators

def _generate_examples(self, path: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""

idx = 0
df = pd.read_json(path, lines=True)

if self.config.schema == "source":
for _, row in df.iterrows():
yield idx, row.to_dict()
idx += 1

elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.NAMED_ENTITY_RECOGNITION]).lower()}":
Enliven26 marked this conversation as resolved.
Show resolved Hide resolved
df["id"] = df.index
df.rename(columns={"words": "tokens"}, inplace=True)
df.rename(columns={"tags": "labels"}, inplace=True)
Enliven26 marked this conversation as resolved.
Show resolved Hide resolved

for _, row in df.iterrows():
yield idx, row.to_dict()
idx += 1

else:
raise ValueError(f"Invalid config: {self.config.name}")


if __name__ == "__main__":
datasets.load_dataset(__file__, name="word_level_source")
Enliven26 marked this conversation as resolved.
Show resolved Hide resolved