You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This paper presents an innovative data augmentation framework with data quality control designed to enhance the robustness of Question Answering (QA) models in low-resource languages, particularly Thai. Recognizing the challenges posed by the scarcity and quality of training data, we leverage data augmentation techniques in both monolingual and cross-lingual settings. Our approach augments and enriches the original dataset, thereby increasing its linguistic diversity and robustness. We evaluate the robustness of our framework on Machine Reading Comprehension, and the experimental results illustrate the potential of data augmentation to effectively increase training data and improve model generalization in low-resource language settings, offering a promising direction for the data augmentation manner.
Dataloader name:
cross_lingual_augmented_thai_qa/cross_lingual_augmented_thai_qa.py
DataCatalogue: http://seacrowd.github.io/seacrowd-catalogue/card.html?cross_lingual_augmented_thai_qa
The text was updated successfully, but these errors were encountered: