-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8dc9987
commit f6fa4bb
Showing
2 changed files
with
170 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
from pandas import read_excel | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@inproceedings{koto-koto-2020-towards, | ||
title = "Towards Computational Linguistics in {M}inangkabau Language: | ||
Studies on Sentiment Analysis and Machine Translation", | ||
author = "Koto, Fajri and | ||
Koto, Ikhwan", | ||
editor = "Nguyen, Minh Le and | ||
Luong, Mai Chi and | ||
Song, Sanghoun", | ||
booktitle = "Proceedings of the 34th Pacific Asia Conference on Language, | ||
Information and Computation", | ||
month = oct, | ||
year = "2020", | ||
address = "Hanoi, Vietnam", | ||
publisher = "Association for Computational Linguistics", | ||
url = "https://aclanthology.org/2020.paclic-1.17", | ||
pages = "138--148", | ||
} | ||
""" | ||
|
||
_DATASETNAME = "minang_senti" | ||
|
||
_DESCRIPTION = """\ | ||
We release the Minangkabau corpus for sentiment analysis by manually translating | ||
5,000 sentences of Indonesian sentiment analysis corpora. In this work, we | ||
conduct a binary sentiment classification on positive and negative sentences by | ||
first manually translating the Indonesian sentiment analysis corpus to the | ||
Minangkabau language (Agam-Tanah Datar dialect) | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/fajri91/minangNLP" | ||
|
||
_LANGUAGES = ["ind", "min"] | ||
|
||
_LICENSE = Licenses.MIT.value | ||
|
||
_LOCAL = False | ||
|
||
_BASE_URL = "https://github.com/fajri91/minangNLP/raw/master/sentiment/data/folds/{split}{index}.xlsx" | ||
|
||
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] | ||
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # text | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class MinangSentiDataset(datasets.GeneratorBasedBuilder): | ||
"""Binary sentiment classification on manually translated Minangkabau corpus.""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [] | ||
for subset in _LANGUAGES: | ||
BUILDER_CONFIGS += [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{subset}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} {subset} source schema", | ||
schema="source", | ||
subset_id=subset, | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} {subset} SEACrowd schema", | ||
schema=_SEACROWD_SCHEMA, | ||
subset_id=subset, | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"minang": datasets.Value("string"), | ||
"indo": datasets.Value("string"), | ||
"sentiment": datasets.ClassLabel(names=["positive", "negative"]), | ||
} | ||
) | ||
elif self.config.schema == _SEACROWD_SCHEMA: | ||
features = schemas.text_features(label_names=["positive", "negative"]) | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
train_urls = [_BASE_URL.format(split="train", index=i) for i in range(5)] | ||
test_urls = [_BASE_URL.format(split="test", index=i) for i in range(5)] | ||
dev_urls = [_BASE_URL.format(split="dev", index=i) for i in range(5)] | ||
|
||
train_paths = [Path(dl_manager.download(url)) for url in train_urls] | ||
test_paths = [Path(dl_manager.download(url)) for url in test_urls] | ||
dev_paths = [Path(dl_manager.download(url)) for url in dev_urls] | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": train_paths, | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepath": test_paths, | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={ | ||
"filepath": dev_paths, | ||
}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
key = 0 | ||
for file in filepath: | ||
data = read_excel(file) | ||
for _, row in data.iterrows(): | ||
if self.config.schema == "source": | ||
yield key, { | ||
"minang": row["minang"], | ||
"indo": row["indo"], | ||
"sentiment": row["sentiment"], | ||
} | ||
elif self.config.schema == _SEACROWD_SCHEMA: | ||
yield key, { | ||
"id": str(key), | ||
"text": row["minang"] if self.config.subset_id == "min" else row["indo"], | ||
"label": row["sentiment"], | ||
} | ||
key += 1 |