From 30db83774bf033f8d1a345de1cdc6aa96339e4a1 Mon Sep 17 00:00:00 2001 From: Adrien Linares <76013394+adlina1@users.noreply.github.com> Date: Wed, 17 Jul 2024 15:26:49 +0200 Subject: [PATCH] Added papers citing our work and our own related papers --- README.md | 105 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 105 insertions(+) diff --git a/README.md b/README.md index 530469d66..33abef135 100644 --- a/README.md +++ b/README.md @@ -106,6 +106,111 @@ scripts described in that paper](MSR2019) > If you wrote a paper that uses the data or the tools from this repository, please let us know (through an issue) and we'll add it to this list. +___ + + + +**Papers citing our work** +* Bui, Q-C. et al. (May 2022). [Vul4J: a dataset of reproducible Java vulnerabilities geared towards the study of program repair techniques](https://dl.acm.org/doi/abs/10.1145/3524842.3528482) +* Galvão, P.L. (October 2022). [Analysis and Aggregation of Vulnerability Databases with Code-Level Data](https://repositorio-aberto.up.pt/bitstream/10216/144796/2/588886.pdf) +* Aladics, T. et al. (2022). [A Vulnerability Introducing Commit Dataset for Java: an Improved SZZ Based Approach](https://real.mtak.hu/149061/1/ICSOFT_2022_41_CR-1.pdf) +* Sharma, T. et al. (October 2021). [A Survey on Machine Learning Techniques for Source Code Analysis](https://arxiv.org/abs/2110.09610) +* Hommersom, D. et al. (June 2024). [Automated Mapping of Vulnerability Advisories onto their Fix Commits in Open Source Repositories](https://dl.acm.org/doi/abs/10.1145/3649590) +* Marchand-Melsom, A. et al. (June 2020). [Automatic repair of OWASP Top 10 security vulnerabilities: A survey](https://dl.acm.org/doi/abs/10.1145/3387940.3392200) +* Sawadogo, A. D. et al. (Dec 2021). [Early Detection of Security-Relevant Bug Reports using Machine Learning: How Far Are We?](https://arxiv.org/abs/2112.10123) +* Sun, S. et al. (Jul 2023). [Exploring Security Commits in Python](https://arxiv.org/abs/2307.11853) +* Reis, S. et al. (June 2021). [Fixing Vulnerabilities Potentially Hinders Maintainability](https://arxiv.org/abs/2106.03271) +* Andrade, R., & Santos, V. (September 2021). [Investigating vulnerability datasets](https://sol.sbc.org.br/index.php/vem/article/view/17213) +* Nguyen, T. G. et al. (May 2023). [Multi-Granularity Detector for Vulnerability Fixesv](https://arxiv.org/abs/2305.13884) +* Siddiq, M. L., & Santos, J. C. S. (November 2022). [SecurityEval dataset: mining vulnerability examples to evaluate machine learning-based code generation techniques](https://dl.acm.org/doi/abs/10.1145/3549035.3561184) +* Sawadogo, A. D. et al. (August 2022). [SSPCatcher: Learning to catch security patches](https://link.springer.com/article/10.1007/s10664-022-10168-9) +* Dunlap, T. et al. (July 2024). [VFCFinder: Pairing Security Advisories and Patches](http://enck.org/pubs/dunlap-asiaccs24.pdf) +* Dunlap, T. et al. (November 2023). [VFCFinder: Seamlessly Pairing Security Advisories and Patches](https://arxiv.org/abs/2311.01532) +* Bao, L. et al. (July 2022). [V-SZZ: automatic identification of version ranges affected by CVE vulnerabilities](https://dl.acm.org/doi/abs/10.1145/3510003.3510113) +* Fan, J. et al. (September 2020). [A C/C++ Code Vulnerability Dataset with Code Changes and CVE Summaries](https://dl.acm.org/doi/abs/10.1145/3379597.3387501) +* Zhang, J. et al. (January 2023). [A Survey of Learning-based Automated Program Repair](https://arxiv.org/abs/2301.03270) +* Alzubaidi, L. et al. (April 2023). [A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications](https://link.springer.com/article/10.1186/s40537-023-00727-2) +* Sharma, T. et al. (December 2023). [A survey on machine learning techniques applied to source code](https://www.sciencedirect.com/science/article/pii/S0164121223003291) +* Elder, S. et al. (April 2024). [A Survey on Software Vulnerability Exploitability Assessment](https://dl.acm.org/doi/abs/10.1145/3648610) +* Aladics, T. et al. (March 2023). [An AST-based Code Change Representation and its Performance in Just-in-time Vulnerability Prediction](https://arxiv.org/abs/2303.16591) +* Singhal, A., & Goel, P.K. (2023). [Analysis and Identification of Malicious Mobile Applications](https://ieeexplore.ieee.org/abstract/document/10428519) +* Senanayake, J. et al. (July 2021). [Android Mobile Malware Detection Using Machine Learning: A Systematic Review](https://www.mdpi.com/2079-9292/10/13/1606) +* Bui, Q-C. et al. (December 2023). [APR4Vul: an empirical study of automatic program repair techniques on real-world Java vulnerabilities](https://link.springer.com/article/10.1007/s10664-023-10415-7) +* Senanayake, J. et al. (January 2023). [Android Source Code Vulnerability Detection: A Systematic Literature Review](https://dl.acm.org/doi/full/10.1145/3556974) +* Reis, S. et al. (June 2023). [Are security commit messages informative? Not enough!](https://dl.acm.org/doi/abs/10.1145/3593434.3593481) +* Anonymous authors. (2022). [Beyond syntax trees: learning embeddings of code edits by combining multiple source representations](https://openreview.net/pdf?id=H8qETo_W1-9) +* Challande, A. et al. (April 2022). [Building a Commit-level Dataset of Real-world Vulnerabilities](https://dl.acm.org/doi/abs/10.1145/3508398.3511495) +* Wang, S., & Nagappan, N. (July 2019). [Characterizing and Understanding Software Developer Networks in Security Development](https://arxiv.org/abs/1907.12141) +* Harzevili, N. S. et al. (March 2022). [Characterizing and Understanding Software Security Vulnerabilities in Machine Learning Libraries](https://arxiv.org/abs/2203.06502) +* Tate, S. R. et al. (2020). [Characterizing Vulnerabilities in a Major Linux Distribution](https://home.uncg.edu/cmp/faculty/srtate/pubs/vulnerabilities/Vulnerabilities-SEKE2020.pdf) +* Zhang, L. et al. (January 2023). [Compatible Remediation on Vulnerabilities from Third-Party Libraries for Java Projects](https://arxiv.org/abs/2301.08434) +* Lee, J.Y.D., & Chieu, H.L. (November 2021). [Co-training for Commit Classification](https://aclanthology.org/2021.wnut-1.43/) +* Nikitopoulos, G. et al. (August 2021). [CrossVul: a cross-language vulnerability dataset with commit data](https://dl.acm.org/doi/10.1145/3468264.3473122) +* Bhandari, G.P. (July 2021). [CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software](https://arxiv.org/abs/2107.08760) +* Sonnekalb, T. et al. (October 2021). [Deep security analysis of program code](https://link.springer.com/article/10.1007/s10664-021-10029-x) +* Triet, H.M. et al. (August 2021). [DeepCVA: Automated Commit-level Vulnerability Assessment with Deep Multi-task Learning](https://arxiv.org/abs/2108.08041) +* Senanayake, J. et al. (May 2024). [Defendroid: Real-time Android code vulnerability detection via blockchain federated neural network with XAI](https://www.sciencedirect.com/science/article/pii/S2214212624000449) +* Stefanoni, A. et al. (2022). [Detecting Security Patches in Java Projects Using NLP Technology](https://aclanthology.org/2022.icnlsp-1.6.pdf) +* Okutan, A. et al. (May 2023). [Empirical Validation of Automated Vulnerability Curation and Characterization](https://s2e-lab.github.io/preprints/tse23-preprint.pdf) +* Wang, J. et al. (October 2023). [Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation](https://arxiv.org/abs/2310.16263) +* Bottner, L. et al. (December 2023). [Evaluation of Free and Open Source Tools for Automated Software Composition Analysis](https://dl.acm.org/doi/abs/10.1145/3631204.3631862) +* Ganz, T. et al. (November 2021). [Explaining Graph Neural Networks for Vulnerability Discovery](https://dl.acm.org/doi/abs/10.1145/3474369.3486866) +* Ram, A. et al. (November 2019). [Exploiting Token and Path-based Representations of Code for Identifying Security-Relevant Commits](https://arxiv.org/abs/1911.07620) +* Md. Mostafizer Rahman, et al. (July 2023). [Exploring Automated Code Evaluation Systems and Resources for Code Analysis: A Comprehensive Survey](https://arxiv.org/abs/2307.08705) +* Zhang, Y. et al. (October 2023). [How well does LLM generate security tests?](https://arxiv.org/abs/2310.00710) +* Jing, D. (2022). [Improvement of Vulnerable Code Dataset Based on Program Equivalence Transformation](https://iopscience.iop.org/article/10.1088/1742-6596/2363/1/012010) +* Wu, Y. et al. (May 2023). [How Effective Are Neural Networks for Fixing Security Vulnerabilities](https://arxiv.org/abs/2305.18607) +* Yang, G. et al. (August 2021). [Few-Sample Named Entity Recognition for Security Vulnerability Reports by Fine-Tuning Pre-Trained Language Models](https://arxiv.org/abs/2108.06590) +* Zhou, J. et al. (2021). [Finding A Needle in a Haystack: Automated Mining of Silent Vulnerability Fixes](https://ieeexplore.ieee.org/abstract/document/9678720) +* Dunlap, T. et al. (2023). [Finding Fixed Vulnerabilities with Off-the-Shelf Static Analysis](https://ieeexplore.ieee.org/document/10190493) +* Shestov, A. et al. (January 2024). [Finetuning Large Language Models for Vulnerability Detection](https://arxiv.org/abs/2401.17010) +* Scalco, S. et al. (July 2024). [Hash4Patch: A Lightweight Low False Positive Tool for Finding Vulnerability Patch Commits](https://dl.acm.org/doi/10.1145/3643991.3644871) +* Nguyen-Truong, G. et al. (July 2022). [HERMES: Using Commit-Issue Linking to Detect Vulnerability-Fixing Commits](https://ieeexplore.ieee.org/abstract/document/9825835) +* Wang, J. et al. (July 2024). [Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval](https://arxiv.org/abs/2407.02395) +* Sawadogo, A.D. et al. (January 2020). [Learning to Catch Security Patches](https://arxiv.org/abs/2001.09148) +* Tony, C. et al. (March 2023). [LLMSecEval: A Dataset of Natural Language Prompts for Security Evaluations](https://arxiv.org/abs/2303.09384) +* Wang, S., & Naggapan, N. (July 2019). [Characterizing and Understanding Software Developer Networks in Security Development](https://www.researchgate.net/publication/334760102_Characterizing_and_Understanding_Software_Developer_Networks_in_Security_Development) +* Chen, Z. et al. (April 2021). [Neural Transfer Learning for Repairing Security Vulnerabilities in C Code](https://arxiv.org/abs/2104.08308) +* Papotti, A. et al. (September 2022). [On the acceptance by code reviewers of candidate security patches suggested by Automated Program Repair tools](https://arxiv.org/abs/2209.07211) +* Mir, A.M. et al. (February 2024). [On the Effectiveness of Machine Learning-based Call Graph Pruning: An Empirical Study](https://arxiv.org/abs/2402.07294) +* Dietrich, J. et al. (June 2023). [On the Security Blind Spots of Software Composition Analysis](https://arxiv.org/abs/2306.05534) +* Triet H. M. Le., & Babar, A.M. (March 2022). [On the Use of Fine-grained Vulnerable Code Statements for Software Vulnerability Assessment Models](https://arxiv.org/abs/2203.08417) +* Chapman, J., & Venugopalan, H. (January 2023). [Open Source Software Computed Risk Framework](https://ieeexplore.ieee.org/abstract/document/10000561) +* Canfora, G. et al. (February 2022). [Patchworking: Exploring the code changes induced by vulnerability fixing activities](https://www.researchgate.net/publication/355561561_Patchworking_Exploring_the_code_changes_induced_by_vulnerability_fixing_activities) +* Garg, S. et al. (June 2021). [PerfLens: a data-driven performance bug detection and fix platform](https://dl.acm.org/doi/abs/10.1145/3460946.3464318) +* Coskun, T. et al. (November 2022). [Profiling developers to predict vulnerable code changes](https://dl.acm.org/doi/abs/10.1145/3558489.3559069) +* Bhuiyan, M.H.M. et al. (July 2023). [SecBench.js: An Executable Security Benchmark Suite for Server-Side JavaScript](https://ieeexplore.ieee.org/abstract/document/10172577) +* Reis, S. et al. (October 2022). [SECOM: towards a convention for security commit messages](https://dl.acm.org/doi/abs/10.1145/3524842.3528513) +* Bennett, G. et al. (June 2024). [Semgrep*: Improving the Limited Performance of Static Application Security Testing (SAST) Tools](https://dl.acm.org/doi/abs/10.1145/3661167.3661262) +* Chi, J. et al. (October 2020). [SeqTrans: Automatic Vulnerability Fix via Sequence to Sequence Learning](https://arxiv.org/abs/2010.10805) +* Ahmed, A. et al. (May 2023). [Sequential Graph Neural Networks for Source Code Vulnerability Identification](https://arxiv.org/abs/2306.05375) +* Sun, J. et al. (February 2023). [Silent Vulnerable Dependency Alert Prediction with Vulnerability Key Aspect Explanation](https://arxiv.org/abs/2302.07445) +* Zhao, L. et al. (November 2023). [Software Composition Analysis for Vulnerability Detection: An Empirical Study on Java Projects](https://dl.acm.org/doi/10.1145/3611643.3616299) +* Zhan, Q. et al. (January 2024). [Survey on Vulnerability Awareness of Open Source Software](https://www.jos.org.cn/josen/article/abstract/6935) +* Li, X. et al. (March 2023). [The anatomy of a vulnerability database: A systematic mapping study](https://www.sciencedirect.com/science/article/pii/S0164121223000742) +* Al Debeyan, F. et al. (February 2024). [The impact of hard and easy negative training data on vulnerability prediction performance☆](https://www.sciencedirect.com/science/article/pii/S0164121224000463) +* Xu, C. et al. (December 2021). [Tracking Patches for Open Source Software Vulnerabilities](https://arxiv.org/abs/2112.02240) +* Risse, N., & Böhme, M. (June 2023). [Uncovering the Limits of Machine Learning for Automatic Vulnerability Detection](https://arxiv.org/abs/2306.17193) +* Xu, N. et al. (July 2023). [Understanding and Tackling Label Errors in Deep Learning-Based Vulnerability Detection (Experience Paper)](https://dl.acm.org/doi/abs/10.1145/3597926.3598037) +* Wu, Y. et al. (July 2023). [Understanding the Threats of Upstream Vulnerabilities to Downstream Projects in the Maven Ecosystem](https://ieeexplore.ieee.org/abstract/document/10172868) +* Esposito, M., & Falessi, D. (March 2024). [VALIDATE: A deep dive into vulnerability prediction datasets](https://www.sciencedirect.com/science/article/pii/S0950584924000533) +* Wang, S. et al. (July 2022). [VCMatch: A Ranking-based Approach for Automatic Security Patches Localization for OSS Vulnerabilities](https://ieeexplore.ieee.org/abstract/document/9825908) +* Sun, Q. et al. (December 2022). [VERJava: Vulnerable Version Identification for Java OSS with a Two-Stage Analysis](https://ieeexplore.ieee.org/abstract/document/9978189) +* Nguyen, S. et al. (September 2023). [VFFINDER: A Graph-based Approach for Automated Silent Vulnerability-Fix Identification](https://arxiv.org/abs/2309.01971) +* Piran, A. et al. (March 2022). [Vulnerability Analysis of Similar Code](https://ieeexplore.ieee.org/abstract/document/9724745) +* Keller, P. et al. (February 2020). [What You See is What it Means! Semantic Representation Learning of Code based on Visualization and Transfer Learning](https://arxiv.org/abs/2002.02650) + +___ + +**Our related papers** +* Cabrera Lozoya, R. et al. (March 2021). [Commit2Vec: Learning Distributed Representations of Code Changes](https://link.springer.com/article/10.1007/s42979-021-00566-z) +* Fehrer, T. et al. (May 2021). [Detecting Security Fixes in Open-Source Repositories using Static Code Analyzers](https://dl.acm.org/doi/pdf/10.1145/3661167.3661217) +* Ponta, S.E. et al. (June 2020). [Detection, assessment and mitigation of vulnerabilities in open source dependencies](https://www.semanticscholar.org/paper/Detection%2C-assessment-and-mitigation-of-in-open-Ponta-Plate/728eab7ac5ae7dd624d306ae5e1887f7b10447cc) +* Dann, A. et al. (September 2022). [Identifying Challenges for OSS Vulnerability Scanners - A Study & Test Suite](https://www.computer.org/csdl/journal/ts/2022/09/09506931/1vNfNyyKDOo) +* Ponta, S.E. et al. (August 2021). [The Used, the Bloated, and the Vulnerable: Reducing the Attack Surface of an Industrial Application](https://arxiv.org/abs/2108.05115) +* Iannone, E. et al. (June 2021). [Toward Automated Exploit Generation for Known Vulnerabilities in Open-Source Libraries](https://ieeexplore.ieee.org/abstract/document/9462983) + + ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=sap/project-kb&type=Date)](https://star-history.com/#sap/project-kb&Date)