-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_pretraining.py
1473 lines (1267 loc) · 73.2 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (C) 2021 Samsung Electronics Co. LTD
# This software is a property of Samsung Electronics.
# No part of this software, either material or conceptual may be copied or distributed, transmitted,
# transcribed, stored in a retrieval system or translated into any human or computer language in any form by any means,
# electronic, mechanical, manual or otherwise, or disclosed
# to third parties without the express written permission of Samsung Electronics.
# The following items are modified and they can be claimed as properties of Samsung Electronics.
# (1) Load splitting training data
# (2) Add A new local/group exchange padding method
# (3) Add NCCL warmup for group exchange padding
# (4) Add per-device local gradient clipping before all-reduce
# coding=utf-8
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Copyright 2020 MLBenchmark Group. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT Pretraining"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import csv
import h5py
import os
import glob
import gc
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, Dataset
from torch.utils.data.distributed import DistributedSampler
import torch.nn.functional as F
import logging
import math
import multiprocessing
import numpy as np
import os
import sys
import random
import re
import time
import inspect
from types import MethodType
from collections import OrderedDict
from concurrent.futures import ProcessPoolExecutor
from modeling import BertForPreTraining, BertConfig
from apex.multi_tensor_apply import multi_tensor_applier
from schedulers import LinearWarmupPolyDecayScheduler
import utils
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, Dataset
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
import torch.autograd.profiler as prof
import amp_C
import apex_C
try:
from apex import amp
from apex.amp import _amp_state
from apex.parallel import convert_syncbn_model
from apex.parallel.distributed import flat_dist_call
has_apex = True
except ImportError:
has_apex = False
try:
from torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook import PowerSGDState, powerSGD_hook
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import _allreduce_fut
has_ddp_algo_hook = True
except ImportError:
has_ddp_algo_hook = False
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
import types
from contextlib import suppress
from contextlib import contextmanager
from functools import partial
from file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from modeling import BertForPreTraining, BertConfig
from schedulers import LinearWarmUpScheduler, LinearWarmupPolyDecayScheduler
import mlperf_logger
from mhalib import *
# Global variables
skipped_steps = 0
global_grad_norm = 5.0
cached_batches = []
clipper = None
class WorkerInitObj(object):
def __init__(self, seed):
self.seed = seed
def __call__(self, id):
np.random.seed(seed=self.seed + id)
random.seed(self.seed + id)
def create_pretraining_dataset(input_file, max_pred_length, shared_list, args, worker_init_fn):
train_data = pretraining_dataset(input_files=input_file, max_pred_length=max_pred_length)
if not args.use_split_data:
train_sampler = RandomSampler(train_data)
else:
train_sampler = utils.SplitRandomSampler(input_file, batch_ratio=list(map(int, args.split_batch_cnt)))
train_dataloader = DataLoader(train_data, sampler=train_sampler,batch_size=args.train_batch_size, num_workers=4, worker_init_fn=worker_init_fn, pin_memory=True)
return train_dataloader, input_file
def create_eval_dataset(args, worker_init_fn):
eval_data = []
for eval_file in sorted(os.listdir(args.eval_dir)):
eval_file_path = os.path.join(args.eval_dir, eval_file)
if os.path.isfile(eval_file_path) and 'part' in eval_file_path:
eval_data.extend(pretraining_dataset(eval_file_path, max_pred_length=args.max_predictions_per_seq))
if len(eval_data) > args.num_eval_examples:
eval_data = eval_data[:args.num_eval_examples]
break
if torch.distributed.is_initialized():
chunk_size = args.num_eval_examples // torch.distributed.get_world_size()
rank = torch.distributed.get_rank()
remainder = args.num_eval_examples % torch.distributed.get_world_size()
if rank < remainder:
eval_data = eval_data[(chunk_size + 1) * rank: (chunk_size + 1) * (rank + 1)]
else:
eval_data = eval_data[chunk_size * rank + remainder: chunk_size * (rank + 1) + remainder]
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size, num_workers=4, worker_init_fn=worker_init_fn, pin_memory=True)
return eval_dataloader
def exchange_padding_fast(args, device, input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels, max_batch_size, group_pg=None):
torch.cuda.nvtx.range_push('exchangepadding')
pad_size = max_batch_size - input_ids.shape[0]
if pad_size > 0:
input_ids = F.pad(input_ids, (0, 0, 0, pad_size))
segment_ids = F.pad(segment_ids, (0, 0, 0, pad_size))
input_mask = F.pad(input_mask, (0, 0, 0, pad_size))
masked_lm_labels = F.pad(masked_lm_labels, (0, 0, 0, pad_size))
next_sentence_labels = F.pad(next_sentence_labels, (0, pad_size))
if not args.group_exchange_padding:
ngpus = torch.distributed.get_world_size()
igpu = torch.distributed.get_rank()
else:
assert group_pg is not None
ngpus = args.ngpus_per_group
igpu = torch.distributed.get_rank() % args.ngpus_per_group
nseqs = input_mask.shape[0]
ntokensperseq = input_mask.shape[1]
flattened_length_seq = nseqs * ntokensperseq
flattened_length_nsp = nseqs
def get_local_packet_size():
return 4 * flattened_length_seq + flattened_length_nsp
# Storing tensors in same order as arguments
def encode_packet(input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels):
packet = torch.zeros([get_local_packet_size()], device=device, dtype=torch.int16)
curr_pos = 0
packet[curr_pos:curr_pos + flattened_length_seq] = input_ids.view(-1)[:]
curr_pos += flattened_length_seq
packet[curr_pos:curr_pos + flattened_length_seq] = segment_ids.view(-1)[:]
curr_pos += flattened_length_seq
packet[curr_pos:curr_pos + flattened_length_seq] = input_mask.view(-1)[:]
curr_pos += flattened_length_seq
packet[curr_pos:curr_pos + flattened_length_seq] = masked_lm_labels.view(-1)[:]
curr_pos += flattened_length_seq
packet[curr_pos:curr_pos + flattened_length_nsp] = next_sentence_labels.view(-1)[:]
return packet
def decode_packet(flat_packet):
packet = flat_packet.view(ngpus, get_local_packet_size())
curr_pos = 0
input_ids_ = packet[:, curr_pos:curr_pos + flattened_length_seq].contiguous().view(ngpus, nseqs, ntokensperseq)
curr_pos += flattened_length_seq
segment_ids_ = packet[:, curr_pos:curr_pos + flattened_length_seq].contiguous().view(ngpus, nseqs, ntokensperseq)
curr_pos += flattened_length_seq
input_mask_ = packet[:, curr_pos:curr_pos + flattened_length_seq].contiguous().view(ngpus, nseqs, ntokensperseq)
curr_pos += flattened_length_seq
masked_lm_labels_ = packet[:, curr_pos:curr_pos + flattened_length_seq].contiguous().view(ngpus, nseqs, ntokensperseq)
curr_pos += flattened_length_seq
next_sentence_labels_ = packet[:, curr_pos:curr_pos + flattened_length_nsp].contiguous().view(ngpus, nseqs)
return input_ids_, segment_ids_, input_mask_, masked_lm_labels_, next_sentence_labels_
tensors = encode_packet(input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels)
tensors_ = torch.zeros([ngpus, get_local_packet_size()], device=device, dtype=torch.float16)
tensors_ = list(torch.split(tensors_, 1))
# torch.distributed.all_gather(tensors_, tensors.view(torch.float16))
if not args.group_exchange_padding:
torch.distributed.all_gather(tensors_, tensors.view(torch.float16))
else:
torch.distributed.all_gather(tensors_, tensors.view(torch.float16), group=group_pg)
tensors_ = torch.stack(tensors_).view(torch.int16).long()
input_ids_, segment_ids_, input_mask_, masked_lm_labels_, next_sentence_labels_ = decode_packet(tensors_)
seqlens_, indices = torch.sort(input_mask_.sum(dim=2).view(-1), descending=True)
if args.reverse_indices:
indices = indices.view(-1, ngpus)
indices[1::2,] = indices.view(-1, ngpus).flip([1])[1::2,]
indices = indices.flatten() # Only Torch version > 1.8.0 works
if pad_size > 0:
input_ids_sorted = input_ids_.view(ngpus * nseqs, ntokensperseq)[indices[:], :]
segment_ids_sorted = segment_ids_.view(ngpus * nseqs, ntokensperseq)[indices[:], :]
input_mask_sorted = input_mask_.view(ngpus * nseqs, ntokensperseq)[indices[:], :]
masked_lm_labels_sorted = masked_lm_labels_.view(ngpus * nseqs, ntokensperseq)[indices[:], :]
next_sentence_labels_sorted = next_sentence_labels_.view(ngpus * nseqs)[indices[:]]
# we need to remove the empty sequences we added to the batch
valid_idx = seqlens_.view(nseqs, ngpus)[:, igpu] > 0
input_ids_sorted = input_ids_sorted.view(nseqs, ngpus, ntokensperseq)[valid_idx, igpu, :].contiguous()
segment_ids_sorted = segment_ids_sorted.view(nseqs, ngpus, ntokensperseq)[valid_idx, igpu, :].contiguous()
input_mask_sorted = input_mask_sorted.view(nseqs, ngpus, ntokensperseq)[valid_idx, igpu, :].contiguous()
masked_lm_labels_sorted = masked_lm_labels_sorted.view(nseqs, ngpus, ntokensperseq)[valid_idx, igpu, :].contiguous()
next_sentence_labels_sorted = next_sentence_labels_sorted.view(nseqs, ngpus)[valid_idx, igpu].contiguous()
else:
indices_ = indices.view(nseqs, ngpus)[:, igpu]
input_ids_sorted = input_ids_.view(nseqs * ngpus, ntokensperseq)[indices_, :].contiguous()
segment_ids_sorted = segment_ids_.view(nseqs * ngpus, ntokensperseq)[indices_, :].contiguous()
input_mask_sorted = input_mask_.view(nseqs * ngpus, ntokensperseq)[indices_, :].contiguous()
masked_lm_labels_sorted = masked_lm_labels_.view(nseqs * ngpus, ntokensperseq)[indices_, :].contiguous()
next_sentence_labels_sorted = next_sentence_labels_.view(nseqs * ngpus)[indices_].contiguous()
torch.cuda.nvtx.range_pop()
return input_ids_sorted, segment_ids_sorted, input_mask_sorted, masked_lm_labels_sorted, next_sentence_labels_sorted
class pretraining_dataset(Dataset):
def __init__(self, input_files, max_pred_length):
self.input_files = input_files
self.max_pred_length = max_pred_length
self.inputs = None
# TODO : Concurrently read?
if not isinstance(input_files, list):
input_files = [input_files]
for input_file in input_files:
f = h5py.File(input_file, "r")
keys = ['input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions', 'masked_lm_ids',
'next_sentence_labels']
if self.inputs is not None:
self.inputs = [np.concatenate((self.inputs[i], f[key][:]), axis=0) for i, key in enumerate(keys)]
else:
self.inputs = [np.asarray(f[key][:]) for i, key in enumerate(keys)]
f.close()
def __len__(self):
'Denotes the total number of samples'
return len(self.inputs[0])
def __getitem__(self, index):
[input_ids, input_mask, segment_ids, masked_lm_positions, masked_lm_ids, next_sentence_labels] = [
torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else torch.from_numpy(
np.asarray(input[index].astype(np.int64))) for indice, input in enumerate(self.inputs)]
masked_lm_labels = torch.ones(input_ids.shape, dtype=torch.long) * -1
index = self.max_pred_length
# store number of masked tokens in index
padded_mask_indices = (masked_lm_positions == 0).nonzero()
if len(padded_mask_indices) != 0:
index = padded_mask_indices[0].item()
masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
return [input_ids, segment_ids, input_mask,masked_lm_labels, next_sentence_labels]
def parse_arguments():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--input_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain .hdf5 files for the task.")
parser.add_argument("--bert_model", default="bert-large-uncased", type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
# Other parameters
parser.add_argument("--eval_dir",
default=None,
type=str,
help="The eval data dir. Should contain .hdf5 files for the task.")
parser.add_argument("--eval_iter_start_samples",
default=3000000,
type=int,
help="Sample to begin performing eval.")
parser.add_argument("--eval_iter_samples",
default=-1,
type=int,
help="If set to -1, disable eval, \
else evaluate every eval_iter_samples during training")
parser.add_argument("--num_eval_examples",
default=10000,
type=int,
help="number of eval examples to run eval on")
parser.add_argument("--cache_eval_data",
default=False,
action='store_true',
help="whether to cache evaluation data on GPU")
parser.add_argument("--init_checkpoint",
default=None,
type=str,
help="The initial checkpoint to start training from.")
parser.add_argument("--init_tf_checkpoint",
default=None,
type=str,
help="The initial TF checkpoint to start training from.")
parser.add_argument("--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--max_predictions_per_seq",
default=76,
type=int,
help="The maximum total of masked tokens in input sequence")
parser.add_argument("--train_batch_size",
default=18,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=128,
type=int,
help="Total batch size for training.")
parser.add_argument("--learning_rate",
default=4e-5,
type=float,
help="The initial learning rate for ADAM.")
parser.add_argument("--end_learning_rate",
default=0.0,
type=float,
help="The end learning rate for ADAM.")
parser.add_argument("--weight_decay_rate",
default=0.01,
type=float,
help="weight decay rate for ADAM.")
parser.add_argument("--opt_lamb_beta_1",
default=0.9,
type=float,
help="ADAM beta1.")
parser.add_argument("--opt_lamb_beta_2",
default=0.999,
type=float,
help="ADAM beta2.")
parser.add_argument("--epsilon",
default=1e-6,
type=float,
help="optimizer epsilon")
parser.add_argument("--max_steps",
default=1536,
type=float,
help="Total number of training steps to perform.")
parser.add_argument("--max_samples_termination",
default=14000000,
type=float,
help="Total number of training samples to run.")
parser.add_argument("--warmup_proportion",
default=0.01,
type=float,
help="Proportion of optimizer update steps to perform linear learning rate warmup for. "
"Typically 1/8th of steps for Phase2")
parser.add_argument("--warmup_steps",
default=0,
type=float,
help="Number of optimizer update steps to perform linear learning rate warmup for. "
"Typically 1/8th of steps for Phase2")
parser.add_argument("--start_warmup_step",
default=0,
type=float,
help="Starting step for warmup. ")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--fp16',
default=False,
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--use_apex_amp',
default=False,
action='store_true',
help="Whether to use APEX Configuration")
parser.add_argument('--use_torch_amp',
default=False,
action='store_true',
help="Whether to use Pytorch AMP")
parser.add_argument('--loss_scale',
type=float, default=0.0,
help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
parser.add_argument('--log_freq',
type=float, default=1.0,
help='frequency of logging loss.')
parser.add_argument("--resume_from_checkpoint",
default=False,
action='store_true',
help="Whether to resume training from checkpoint. If set, precedes init_checkpoint/init_tf_checkpoint")
parser.add_argument('--keep_n_most_recent_checkpoints',
type=int,
default=20,
help="Number of checkpoints to keep (rolling basis).")
parser.add_argument('--num_samples_per_checkpoint',
type=int,
default=500000,
help="Number of update steps until a model checkpoint is saved to disk.")
parser.add_argument('--min_samples_to_start_checkpoints',
type=int,
default=3000000,
help="Number of update steps until model checkpoints start saving to disk.")
parser.add_argument('--skip_checkpoint',
default=False,
action='store_true',
help="Whether to save checkpoints")
parser.add_argument('--phase2',
default=False,
action='store_true',
help="Only required for checkpoint saving format")
parser.add_argument('--allreduce_post_accumulation',
default=False,
action='store_true',
help="Whether to do allreduces during gradient accumulation steps.")
parser.add_argument('--allreduce_post_accumulation_fp16',
default=False,
action='store_true',
help="Whether to do fp16 allreduce post accumulation.")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--unpad",
default=False,
action='store_true',
help="Whether to run with unpadding.")
parser.add_argument("--unpad_fmha",
default=False,
action='store_true',
help="Whether to run FMHA with unpadding.")
parser.add_argument("--pad",
default=False,
action='store_true',
help="Whether to pad tokens.")
parser.add_argument("--enable_fuse_dropout",
default=False,
action='store_true',
help="Whether to disable fusion of attention mask to softmax and dropout.")
parser.add_argument("--disable_fuse_mask",
default=False,
action='store_true',
help="Whether to disable fusion of the attention mask to softmax.")
parser.add_argument("--disable_fuse_scale",
default=False,
action='store_true',
help="Whether to disable fusion of the scaling to BMM1.")
parser.add_argument("--disable_fuse_qkv",
default=False,
action='store_true',
help="Whether to disable fusion of the QKV GEMMs.")
parser.add_argument("--disable_apex_softmax",
default=False,
action='store_true',
help="Whether to disable apex softmax.")
parser.add_argument("--enable_stream",
default=False,
action='store_true',
help="Enable use of streams for pad case.")
parser.add_argument("--fused_mha",
default=False,
action='store_true',
help="Whether to run with optimizations.")
parser.add_argument("--fused_gelu_bias",
default=False,
action='store_true',
help="Whether to run with optimizations.")
parser.add_argument("--dense_seq_output",
default=False,
action='store_true',
help="Whether to run with optimizations.")
parser.add_argument("--use_env",
action='store_true',
help="Whether to read local rank and global rank from ENVVAR")
parser.add_argument('--bert_config_path',
type=str,
default="/workspace/phase1",
help="Path bert_config.json is located in")
parser.add_argument('--target_mlm_accuracy',
type=float,
default=0.0,
help="Stop training after reaching this Masked-LM accuracy")
parser.add_argument('--train_mlm_accuracy_window_size',
type=int,
default=0,
help="Average accuracy over this amount of batches before performing a stopping criterion test")
parser.add_argument('--num_epochs_to_generate_seeds_for',
type=int,
default=2,
help="Number of epochs to plan seeds for. Same set across all workers.")
parser.add_argument("--record_gradients",
default=False,
action='store_true',
help="Whether to record gradient distribution")
parser.add_argument("--local_gradient_clip",
default=False,
action='store_true',
help="Per-device clip norm, if enabled. It will disable global clip_norm")
parser.add_argument("--baseline",
default=False,
action='store_true',
help="MLPerf original implementation")
parser.add_argument("--profile",
default=False,
action='store_true',
help="Whether to profile")
parser.add_argument("--exchange_padding",
default=False,
action='store_true',
help="Whether to run with exchange_padding.")
parser.add_argument('--distributed_lamb',
default=False,
action='store_true',
help="Whether to use distributed lamb.")
parser.add_argument('--optimizer',
type=str,
default="FusedLAMB",
help="The name of optimizer to use")
parser.add_argument('--use_split_data',
default=False,
action='store_true',
help="Whether to use splitting bin dataset for training")
parser.add_argument('--split_batch_cnt', nargs='+',
help='Count to load from each fixed bins')
parser.add_argument('--reverse_indices',
default=False,
action='store_true',
help="Whether reverse indices of even row when exchange padding")
parser.add_argument("--group_exchange_padding",
default=False,
action='store_true',
help="Whether to use group exchange padding.")
parser.add_argument('--ngpus_per_group',
type=int,
default=8,
help="Number of GPUs used for group exchange padding.")
parser.add_argument("--use_partial_data",
default=False,
action='store_true',
help="use partial (not whole) dataset for training.")
parser.add_argument("--lr_max_steps",
default=179,
type=float,
help="If the training step is less than or equal to lr_max_steps, the lr is calculated by the lr scheduler; "
"otherwise, lr is end lr")
args = parser.parse_args()
# Check we've been given a checkpoint
# assert args.init_checkpoint is not None or args.init_tf_checkpoint is not None or found_resume_checkpoint(args), \
# "Must specify --init_checkpoint, --init_tf_checkpoint or have ckpt to resume from in --output_dir of the form *.pt"
assert not (args.init_checkpoint is not None and args.init_tf_checkpoint is not None), \
"Can only specify one of --init_checkpoint and --init_tf_checkpoint"
return args
# Returns true only if resuming from a checkpoint found in output_dir.
# init_checkpoint and init_tf_checkpoint are not considered
def found_resume_checkpoint(args):
if args.phase2:
checkpoint_str = "phase2_ckpt*.pt"
else:
checkpoint_str = "phase1_ckpt*.pt"
return args.resume_from_checkpoint and len(glob.glob(os.path.join(args.output_dir, checkpoint_str))) > 0
def setup_training(args):
assert (torch.cuda.is_available())
if args.local_rank == -1:
device = torch.device("cuda")
args.n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl', init_method='env://', rank=args.rank)
args.n_gpu = torch.distributed.get_world_size()
print("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, args.n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(args.gradient_accumulation_steps))
if args.train_batch_size % args.gradient_accumulation_steps != 0:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, batch size {} should be divisible".format(args.gradient_accumulation_steps, args.train_batch_size))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
if not (args.do_train or (args.eval_dir and args.eval_iter_samples <= 0)):
raise ValueError(" `do_train` or should be in offline eval mode")
if not args.resume_from_checkpoint or not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
return device, args
def remap_attn_parameters(model_dict):
res_dict = OrderedDict()
for k in model_dict:
if 'attention' in k:
if 'self.query.weight' in k:
new_k = k.replace('self.query.weight', 'multi_head_attention.q_weight')
elif 'self.key.weight' in k:
new_k = k.replace('self.key.weight', 'multi_head_attention.k_weight')
elif 'self.value.weight' in k:
new_k = k.replace('self.value.weight', 'multi_head_attention.v_weight')
elif 'self.query.bias' in k:
new_k = k.replace('self.query.bias', 'multi_head_attention.q_bias')
elif 'self.key.bias' in k:
new_k = k.replace('self.key.bias', 'multi_head_attention.k_bias')
elif 'self.value.bias' in k:
new_k = k.replace('self.value.bias', 'multi_head_attention.v_bias')
elif 'output.dense.weight' in k:
new_k = k.replace('output.dense.weight', 'multi_head_attention.out_proj_weight')
elif 'output.dense.bias' in k:
new_k = k.replace('output.dense.bias', 'multi_head_attention.out_proj_bias')
elif 'output.LayerNorm.weight' in k:
new_k = k.replace('output.LayerNorm.weight', 'layer_norm.weight')
elif 'output.LayerNorm.bias' in k:
new_k = k.replace('output.LayerNorm.bias', 'layer_norm.bias')
else:
new_k = k
else:
new_k = k
res_dict[new_k] = model_dict[k]
model_dict.clear()
return res_dict
def prepare_model_and_optimizer(args, device):
global_step = 0
args.resume_step = 0
checkpoint = None
config = BertConfig.from_json_file(args.bert_config_path)
config.fused_mha = args.fused_mha
config.fused_gelu_bias = args.fused_gelu_bias
config.fused_layer_norm = args.fp16 and args.use_apex_amp
config.dense_seq_output = args.dense_seq_output
config.unpad = args.unpad
config.unpad_fmha = args.unpad_fmha
config.pad = args.pad
config.fp16 = args.fp16
config.fuse_qkv = not args.disable_fuse_qkv
config.fuse_scale = not args.disable_fuse_scale
config.fuse_mask = not args.disable_fuse_mask
config.fuse_dropout = args.enable_fuse_dropout
config.apex_softmax = not args.disable_apex_softmax
config.enable_stream = args.enable_stream
if config.fuse_mask == True: config.apex_softmax = True
if config.pad == False: config.enable_stream = True
if config.unpad == True: config.fused_mha = False
# Padding for divisibility by 8
if config.vocab_size % 8 != 0:
config.vocab_size += 8 - (config.vocab_size % 8)
# Load from Pyt checkpoint - either given as init_checkpoint, or picked up from output_dir if found
if args.init_checkpoint or found_resume_checkpoint(args):
# Prepare model
model = BertForPreTraining(config)
if args.init_checkpoint is None: # finding checkpoint in output_dir
checkpoint_str = "phase2_ckpt_*.pt" if args.phase2 else "phase1_ckpt_*.pt"
model_names = [f for f in glob.glob(os.path.join(args.output_dir, checkpoint_str))]
global_step = max([int(x.split('.pt')[0].split('_')[-1].strip()) for x in model_names])
args.resume_step = global_step # used for throughput computation
resume_init_checkpoint = os.path.join(args.output_dir, checkpoint_str.replace("*", str(global_step)))
print("Setting init checkpoint to %s - which is the latest in %s" % (resume_init_checkpoint, args.output_dir))
checkpoint = torch.load(resume_init_checkpoint, map_location="cpu")
else:
checkpoint = torch.load(args.init_checkpoint, map_location="cpu")["model"]
# Fused MHA requires a remapping of checkpoint parameters
if config.fused_mha:
checkpoint_remapped = remap_attn_parameters(checkpoint)
model.load_state_dict(checkpoint_remapped, strict=False)
else:
model.load_state_dict(checkpoint, strict=True)
else: # Load from TF Checkpoint
model = BertForPreTraining(config)
print(f"Model Parameters : {sum([p.numel() for p in model.parameters() if p.requires_grad])}")
model.to(device)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay_rate},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
mlperf_logger.log_event(key=mlperf_logger.constants.OPT_BASE_LR, value=args.learning_rate, sync=False)
optimizer = utils.get_optimizer(args.optimizer, optimizer_grouped_parameters, lr=args.learning_rate,
eps=args.epsilon, betas=(args.opt_lamb_beta_1, args.opt_lamb_beta_2), wd=args.weight_decay_rate)
if hasattr(optimizer, 'set_global_scale'): # Stands for DistributedLAMB
scale = torch.full((1,), float(os.getenv("INIT_LOSS_SCALE", 2 ** 17)), dtype=torch.float32, device=device)
optimizer.set_global_scale(scale)
if hasattr(optimizer, '_clip_grad_norm'): # Stands for FusedLAMB, FusedAdam, DistributedLAMB
optimizer._clip_grad_norm = not args.local_gradient_clip
mlperf_logger.log_event(key='opt_epsilon', value=args.epsilon, sync=False)
mlperf_logger.log_event(key='opt_lamb_beta_1', value=args.opt_lamb_beta_1, sync=False)
mlperf_logger.log_event(key='opt_lamb_beta_2', value=args.opt_lamb_beta_2, sync=False)
mlperf_logger.log_event(key='opt_lamb_weight_decay_rate', value=args.weight_decay_rate, sync=False)
if args.warmup_steps == 0:
args.warmup_steps = int(args.lr_max_steps * args.warmup_proportion)
lr_scheduler = LinearWarmupPolyDecayScheduler(optimizer, start_warmup_steps=args.start_warmup_step,
warmup_steps=args.warmup_steps, total_steps=args.lr_max_steps,
end_learning_rate=args.end_learning_rate, degree=1.0)
if args.fp16:
if args.use_apex_amp:
if args.loss_scale == 0:
model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic", master_weights=not args.distributed_lamb)
else:
model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale=args.loss_scale, master_weights=not args.distributed_lamb)
amp._amp_state.loss_scalers[0]._loss_scale = float(os.getenv("INIT_LOSS_SCALE", int(2 ** 17)))
if utils.is_main_process():
print('Using NVIDIA APEX AMP. Training in mixed precision.')
else:
if utils.is_main_process():
print('Using native PyTorch AMP. Training in mixed precision.')
else:
if utils.is_main_process():
print('AMP not enabled. Training in float32.')
if found_resume_checkpoint(args):
assert False, "code path not tested with cuda graphs"
optimizer.load_state_dict(checkpoint['optimizer'])
if args.fp16 and not args.distributed_lamb:
optimizer._lazy_init_maybe_master_weights()
optimizer._amp_stash.lazy_init_called = True
optimizer.load_state_dict(checkpoint['optimizer'])
for param, saved_param in zip(amp.master_params(optimizer), checkpoint['master params']):
param.data.copy_(saved_param.data)
if args.local_rank != -1:
if not args.distributed_lamb and not args.baseline:
model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank, bucket_cap_mb=25, gradient_as_bucket_view=args.use_apex_amp)
if has_ddp_algo_hook and args.local_gradient_clip and isinstance(model, DDP):
loss_scaler = _amp_state.loss_scalers[0]
if args.local_gradient_clip:
if args.gradient_accumulation_steps > 1: # For 64 GPUs, span-size 16
class local_gradient_clipper(object): # For 1.9.0
def __init__(self, model):
super().__init__()
self.model = model
self.master_grads = [None] * 23
self.prev_master_grads = [None] * 23
self.overflow_buf = torch.cuda.IntTensor([0])
self.prev_overflow_buf = torch.cuda.IntTensor([0])
def allreduce_hook(self, state, bucket): # WARN: no_sync, should catch manual way.
process_group = torch.distributed.group.WORLD
tensor = bucket.get_tensor()
master_grad = self.master_grads[bucket.get_index()]
if not self.overflow_buf:
scaled_grad_norm, _ = amp_C.multi_tensor_l2norm(65536, self.overflow_buf, [[tensor]],False)
coefficient = args.gradient_accumulation_steps*math.sqrt(22)
scaled_grad_norm.clamp_(min=loss_scaler._loss_scale / math.sqrt(22)) # Because of Bucket Count, Set Grad Norm ~= 1
if master_grad is None: # TODO : Remove initialization?
master_grad = self.master_grads[bucket.get_index()] = torch.empty(tensor.numel(), device='cuda', dtype=torch.float32)
amp_C.multi_tensor_scale(65536, self.overflow_buf, [[tensor], [master_grad]], 1 / scaled_grad_norm.mul_(coefficient))
elif tensor is not None: # Weired...
amp_C.multi_tensor_axpby(65536, self.overflow_buf,[[tensor], [master_grad], [master_grad]], 1 / scaled_grad_norm.mul_(coefficient), 1.0, 0)
def noop(fut):
if bucket.is_the_last_bucket_to_allreduce():
self.overflow_buf.zero_()
return [fut.value()[0]]
if self.model.require_backward_grad_sync: # update_step
if not self.overflow_buf and master_grad is not None:
amp_C.multi_tensor_scale(65536, self.overflow_buf, [[master_grad], [tensor]], loss_scaler.loss_scale() / (torch.distributed.get_world_size()))
self.master_grads[bucket.get_index()] = None
fut = torch.distributed.all_reduce(tensor, group=process_group, async_op=True).get_future()
return fut.then(noop)
else: # no_sync
tensor.zero_()
fut = torch.futures.Future()
fut.set_result(bucket.get_tensor())
return fut.then(noop)
clipper = local_gradient_clipper(model)
model.register_comm_hook(torch.distributed.group.WORLD, hook=clipper.allreduce_hook)
else:
overflow_buf = torch.cuda.IntTensor([0])
def allreduce_hook(state, bucket): # For 256 GPUs > KPI, No Accumulation steps
process_group = torch.distributed.group.WORLD
tensor = bucket.get_tensor()
scaled_grad_norm, _ = multi_tensor_applier(amp_C.multi_tensor_l2norm, overflow_buf, [[tensor]],False)
scaled_grad_norm.clamp_(loss_scaler._loss_scale / math.sqrt(22))
amp_C.multi_tensor_scale(65536, overflow_buf, [[tensor], [tensor]], 1 / scaled_grad_norm.mul_(4908.98/loss_scaler._loss_scale))
fut = torch.distributed.all_reduce(tensor, group=process_group, async_op=True).get_future()
def noop(fut):
return [fut.value()[0]]
return fut.then(noop)
model.register_comm_hook(torch.distributed.group.WORLD, hook=allreduce_hook)
else:
flat_dist_call([param.data for param in model.parameters()], torch.distributed.broadcast, (0,))
model.require_backward_grad_sync = True
@contextmanager
def custom_no_sync(self):
old_require_backward_grad_sync = self.require_backward_grad_sync
self.require_backward_grad_sync = False
try:
yield
finally:
self.require_backward_grad_sync = old_require_backward_grad_sync
model.no_sync = partial(custom_no_sync, model)
return model, optimizer, lr_scheduler, checkpoint, global_step
def take_optimizer_step(args, optimizer, model, overflow_buf, global_step):
if args.allreduce_post_accumulation:
# manually allreduce gradients after all accumulation steps
# check for Inf/NaN
# 1. allocate an uninitialized buffer for flattened gradient
scaler = _amp_state.loss_scalers[0]
master_grads = [p.grad for p in amp.master_params(optimizer) if p.grad is not None]
flat_grad_size = sum(p.numel() for p in master_grads)
allreduce_dtype = torch.float16 if args.allreduce_post_accumulation_fp16 else torch.float32
flat_raw = torch.empty(flat_grad_size, device='cuda', dtype=allreduce_dtype)
if args.local_gradient_clip:
grad_norm, _ = multi_tensor_applier(amp_C.multi_tensor_l2norm, overflow_buf,[master_grads], False)
grad_norm.clamp_(min=1.0)
amp_C.multi_tensor_scale(65536, overflow_buf, [master_grads, master_grads], 1 / grad_norm)
# 2. combine unflattening and predivision of unscaled 'raw' gradient
allreduced_views = apex_C.unflatten(flat_raw, master_grads)
overflow_buf.zero_()
amp_C.multi_tensor_scale(65536, overflow_buf, [master_grads, allreduced_views],scaler.loss_scale() / (torch.distributed.get_world_size()))
# 3. sum gradient across ranks. Because of the predivision, this averages the gradient
torch.distributed.all_reduce(flat_raw)
# 4. combine unscaling and unflattening of allreduced gradient
overflow_buf.zero_()
amp_C.multi_tensor_scale(65536, overflow_buf, [allreduced_views, master_grads], 1. / scaler.loss_scale())
# 5. update loss scale
scaler = _amp_state.loss_scalers[0]
old_overflow_buf = scaler._overflow_buf
scaler._overflow_buf = overflow_buf
had_overflow = scaler.update_scale()
scaler._overfloat_buf = old_overflow_buf
# 6. call optimizer step function
if had_overflow == 0:
optimizer.step()
else:
print("Gradient overflow. Skipping step, Loss scale reduces to {}".format(scaler.loss_scale()))
if _amp_state.opt_properties.master_weights:
for param in optimizer._amp_stash.all_fp32_from_fp16_params:
param.grad = None
for param in model.parameters():
param.grad = None
else:
optimizer.step()
for param in model.parameters():
param.grad = None
def run_eval(model, eval_dataloader, device, num_eval_examples, first_eval=False, use_cache=False,
amp_autocast=suppress):
model.eval()
total_eval_loss, total_eval_mlm_acc = 0.0, 0.0
total_masked = 0
# on first eval, load and cache data on GPU
if first_eval and use_cache:
for batch in eval_dataloader:
cached_batches.append([t.to(device) for t in batch])
with torch.no_grad():
for batch in cached_batches if use_cache else eval_dataloader:
if not use_cache:
batch = [t.to(device, non_blocking=True) for t in batch]
input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels = batch
with amp_autocast():
loss, mlm_acc, num_masked = model(input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels)
total_eval_loss += loss * num_masked
total_eval_mlm_acc += mlm_acc * num_masked
total_masked += num_masked
model.train()
# total_eval_mlm_acc and total_eval_loss are already tensors, total_masked is not
total_masked = torch.tensor(total_masked, device=device, dtype=torch.int64)
if torch.distributed.is_initialized():
# Collect total scores from all ranks
torch.distributed.all_reduce(total_eval_mlm_acc, op=torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(total_eval_loss, op=torch.distributed.ReduceOp.SUM)
torch.distributed.all_reduce(total_masked, op=torch.distributed.ReduceOp.SUM)
# Average by number of examples
total_eval_mlm_acc /= total_masked
total_eval_loss /= total_masked
return total_eval_loss.item(), total_eval_mlm_acc.item()
def main():
global skipped_steps
global global_grad_norm
args = parse_arguments()
print("args", args)
status = 'aborted' # later set to 'success' if termination criteria met
mlperf_logger.log_start(key=mlperf_logger.constants.INIT_START, log_all_ranks=True, sync=False)