You are given n balloons, indexed from 0 to n - 1. Each balloon is painted with a number on it represented by an array nums. You are asked to burst all the balloons.
If you burst the ith balloon, you will get nums[i - 1] * nums[i] * nums[i + 1] coins. If i - 1 or i + 1 goes out of bounds of the array, then treat it as if there is a balloon with a 1 painted on it.
Return the maximum coins you can collect by bursting the balloons wisely.
Example 1:
Input: nums = [3,1,5,8]
Output: 167
Explanation:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Approach:-
Lets code:-
public int maxCoins(int[] nums) {
int n = nums.length;
if(n==0){
return 0;
}
int dp[][] = new int[n][n];
for(int len=1; len <= n; len++){
for(int i=0;i<=n-len;i++) {
int j = i+len-1;
for(int k=i; k<=j; k++){
int leftVal = 1;
int rightVal = 1;
if(i!=0){
leftVal = nums[i-1];
}
if(j!=n-1){
rightVal = nums[j+1];
}
int before = 0;
int after = 0;
if(i!=k){
before = dp[i][k-1];
}
if(k!=j){
after = dp[k+1][j];
}
dp[i][j] = Math.max(before + (leftVal * nums[k] * rightVal) + after, dp[i][j]);
}
}
}
return dp[0][n-1];
}
Time complexity - O(n^2) Space complexity - O(n^2)