forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reader.py
194 lines (154 loc) · 6.34 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from paddle.io import DataLoader
from paddlenlp.data import Vocab, Pad
from paddlenlp.data.sampler import SamplerHelper
from paddlenlp.datasets import load_dataset
def read(src_tgt_file, only_src=False):
with open(src_tgt_file, 'r', encoding='utf8') as src_tgt_f:
for line in src_tgt_f:
line = line.strip('\n')
if not line:
continue
line_split = line.split('\t')
if only_src:
yield {"src": line_split[0]}
else:
if len(line_split) != 2:
continue
yield {"src": line_split[0], "trg": line_split[1]}
def min_max_filer(data, max_len, min_len=0):
# 1 for special tokens.
data_min_len = min(len(data[0]), len(data[1])) + 1
data_max_len = max(len(data[0]), len(data[1])) + 1
return (data_min_len >= min_len) and (data_max_len <= max_len)
def create_data_loader(args, places=None):
data_files = {'train': args.training_file, 'dev': args.validation_file}
datasets = [
load_dataset(
read, src_tgt_file=filename, lazy=False)
for split, filename in data_files.items()
]
src_vocab = Vocab.load_vocabulary(
args.src_vocab_fpath,
bos_token=args.special_token[0],
eos_token=args.special_token[1],
unk_token=args.special_token[2])
trg_vocab = Vocab.load_vocabulary(
args.trg_vocab_fpath,
bos_token=args.special_token[0],
eos_token=args.special_token[1],
unk_token=args.special_token[2])
args.src_vocab_size = len(src_vocab)
args.trg_vocab_size = len(trg_vocab)
def convert_samples(sample):
source = [item.strip() for item in sample['src'].split()]
target = [item.strip() for item in sample['trg'].split()]
source = src_vocab.to_indices(source) + [args.eos_idx]
target = [args.bos_idx] + \
trg_vocab.to_indices(target) + [args.eos_idx]
return source, target
data_loaders = [(None)] * 2
for i, dataset in enumerate(datasets):
dataset = dataset.map(convert_samples, lazy=False).filter(
partial(
min_max_filer, max_len=args.max_length))
sampler = SamplerHelper(dataset)
if args.sort_type == SortType.GLOBAL:
src_key = (lambda x, data_source: len(data_source[x][0]))
trg_key = (lambda x, data_source: len(data_source[x][1]))
# Sort twice
sampler = sampler.sort(key=trg_key).sort(key=src_key)
else:
if args.shuffle:
sampler = sampler.shuffle(seed=args.random_seed)
max_key = (lambda x, data_source: max(
len(data_source[x][0]), len(data_source[x][1])))
if args.sort_type == SortType.POOL:
sampler = sampler.sort(key=max_key, buffer_size=args.pool_size)
batch_size_fn = lambda new, count, sofar, data_source: max(sofar, len(data_source[new][0]),
len(data_source[new][1]))
batch_sampler = sampler.batch(
batch_size=args.batch_size,
drop_last=False,
batch_size_fn=batch_size_fn,
key=lambda size_so_far, minibatch_len: size_so_far * minibatch_len)
if args.shuffle_batch:
batch_sampler = batch_sampler.shuffle(seed=args.random_seed)
if i == 0:
batch_sampler = batch_sampler.shard()
data_loader = DataLoader(
dataset=dataset,
places=places,
batch_sampler=batch_sampler,
collate_fn=partial(
prepare_train_input, pad_idx=args.bos_idx),
num_workers=0)
data_loaders[i] = (data_loader)
return data_loaders
def create_infer_loader(args, places=None):
data_files = {'test': args.predict_file, }
dataset = load_dataset(
read, src_tgt_file=data_files['test'], only_src=True, lazy=False)
src_vocab = Vocab.load_vocabulary(
args.src_vocab_fpath,
bos_token=args.special_token[0],
eos_token=args.special_token[1],
unk_token=args.special_token[2])
trg_vocab = Vocab.load_vocabulary(
args.trg_vocab_fpath,
bos_token=args.special_token[0],
eos_token=args.special_token[1],
unk_token=args.special_token[2])
args.src_vocab_size = len(src_vocab)
args.trg_vocab_size = len(trg_vocab)
def convert_samples(sample):
source = [item.strip() for item in sample['src'].split()]
source = src_vocab.to_indices(source) + [args.eos_idx]
target = [args.bos_idx]
return source, target
dataset = dataset.map(convert_samples, lazy=False)
batch_sampler = SamplerHelper(dataset).batch(
batch_size=args.batch_size, drop_last=False)
data_loader = DataLoader(
dataset=dataset,
places=places,
batch_sampler=batch_sampler,
collate_fn=partial(
prepare_infer_input, pad_idx=args.bos_idx),
num_workers=0,
return_list=True)
return data_loader, trg_vocab.to_tokens
def prepare_train_input(insts, pad_idx):
"""
Put all padded data needed by training into a list.
"""
word_pad = Pad(pad_idx)
src_word = word_pad([inst[0] for inst in insts])
trg_word = word_pad(inst[1][:-1] for inst in insts)
lbl_word = word_pad([inst[1][1:] for inst in insts])
data_inputs = [src_word, trg_word, lbl_word]
return data_inputs
def prepare_infer_input(insts, pad_idx):
"""
Put all padded data needed by beam search decoder into a list.
"""
word_pad = Pad(pad_idx)
src_word = word_pad(inst[0] for inst in insts)
return [src_word, ]
class SortType(object):
GLOBAL = 'global'
POOL = 'pool'
NONE = "none"