-
Notifications
You must be signed in to change notification settings - Fork 0
/
images2swf.py
719 lines (554 loc) · 21 KB
/
images2swf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
""" MODULE images2swf
Provides a function (writeSwf) to store a series of PIL images or numpy
arrays in an SWF movie, that can be played on a wide range of OS's.
This module came into being because I wanted to store a series of images
in a movie that can be viewed by other people, and which I can embed in
flash presentations. For writing AVI or MPEG you really need a c/c++
library, and allthough the filesize is then very small, the quality is
sometimes not adequate. Besides I'd like to be independant of yet another
package. I tried writing animated gif using PIL (which is widely available),
but the quality is so poor because it only allows for 256 different colours.
I also looked into MNG and APNG, two standards similar to the PNG stanard.
Both standards promise exactly what I need. However, hardly any application
can read those formats, and I cannot import them in flash.
Therefore I decided to check out the swf file format, which is very well
documented. This is the result: a pure python module to create an SWF file
that shows a series of images. The images are stored using the DEFLATE
algorithm (same as PNG and ZIP and which is included in the standard Python
distribution). As this compression algorithm is much more effective than
that used in GIF images, we obtain better quality (24 bit colours + alpha
channel) while still producesing smaller files (a test showed ~75%).
Although SWF also allows for JPEG compression, doing so would probably
require a third party library (because encoding JPEG is much harder).
This module requires Python 2.x and numpy.
This code is provided as is, and is free to use for all.
sources and tools:
- SWF on wikipedia
- Adobes "SWF File Format Specification" version 10
(http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf)
- swftools (swfdump in specific) for debugging
- iwisoft swf2avi can be used to convert swf to avi/mpg/flv with really
good quality, while file size is reduced with factors 20-100.
A good program in my opinion. The free version has the limitation
of a watermark in the upper left corner.
Almar Klein (August 2009)
"""
try:
import PIL.Image
except ImportError:
PIL = None
import numpy as np
import zlib
import sys, time
## Base functions and classes
if int(sys.version[0])<3:
bytes = str
class BitArray:
""" Dynamic array of bits that automatically resizes
with factors of two.
Append bits using .Append() or +=
You can reverse bits using .Reverse()
"""
def __init__(self, initvalue=None):
self.data = np.zeros((16,), dtype=np.uint8)
self._len = 0
if initvalue is not None:
self.Append(initvalue)
def __len__(self):
return self._len #self.data.shape[0]
def __repr__(self):
return self.data[:self._len].tostring()
def _checkSize(self):
# check length... grow if necessary
arraylen = self.data.shape[0]
if self._len >= arraylen:
tmp = np.zeros((arraylen*2,), dtype=np.uint8)
tmp[:self._len] = self.data[:self._len]
self.data = tmp
def __add__(self, value):
self.Append(value)
return self
def Append(self, bits):
# check input
if isinstance(bits, BitArray):
bits = str(bits)
if isinstance(bits, int):
bits = str(bits)
if not isinstance(bits, basestring):
raise ValueError("Append bits as strings or integers!")
# add bits
for bit in bits:
self.data[self._len] = ord(bit)
self._len += 1
self._checkSize()
def Reverse(self):
""" In-place reverse. """
tmp = self.data[:self._len].copy()
self.data[:self._len] = np.flipud(tmp)
def ToBytes(self):
""" Convert to bytes. If necessary,
zeros are padded to the end (right side).
"""
bits = str(self)
# determine number of bytes
nbytes = 0
while nbytes*8 < len(bits):
nbytes +=1
# pad
bits = bits.ljust(nbytes*8, '0')
# go from bits to bytes
bb = bytes()
for i in range(nbytes):
tmp = int( bits[i*8:(i+1)*8], 2)
bb += intToUint8(tmp)
# done
return bb
def intToUint32(i):
number = int(i)
n1, n2, n3, n4 = 1, 256, 256*256, 256*256*256
b4, number = number // n4, number % n4
b3, number = number // n3, number % n3
b2, number = number // n2, number % n2
b1 = number
return chr(b1) + chr(b2) + chr(b3) + chr(b4)
def intToUint16(i):
i = int(i)
# devide in two parts (bytes)
i1 = i % 256
i2 = int( i//256)
# make string (little endian)
return chr(i1) + chr(i2)
def intToUint8(i):
return chr(int(i))
def intToBits(i,n=None):
""" convert int to a string of bits (0's and 1's in a string),
pad to n elements. Convert back using int(ss,2). """
ii = i
# make bits
bb = BitArray()
while ii > 0:
bb += str(ii % 2)
ii = ii >> 1
bb.Reverse()
# justify
if n is not None:
if len(bb) > n:
raise ValueError("intToBits fail: len larger than padlength.")
bb = str(bb).rjust(n,'0')
# done
return BitArray(bb)
def signedIntToBits(i,n=None):
""" convert signed int to a string of bits (0's and 1's in a string),
pad to n elements. Negative numbers are stored in 2's complement bit
patterns, thus positive numbers always start with a 0.
"""
# negative number?
ii = i
if i<0:
# A negative number, -n, is represented as the bitwise opposite of
ii = abs(ii) -1 # the positive-zero number n-1.
# make bits
bb = BitArray()
while ii > 0:
bb += str(ii % 2)
ii = ii >> 1
bb.Reverse()
# justify
bb = '0' + str(bb) # always need the sign bit in front
if n is not None:
if len(bb) > n:
raise ValueError("signedIntToBits fail: len larger than padlength.")
bb = bb.rjust(n,'0')
# was it negative? (then opposite bits)
if i<0:
bb = bb.replace('0','x').replace('1','0').replace('x','1')
# done
return BitArray(bb)
def twitsToBits(arr):
""" Given a few (signed) numbers, store them
as compactly as possible in the wat specifief by the swf format.
The numbers are multiplied by 20, assuming they
are twits.
Can be used to make the RECT record.
"""
# first determine length using non justified bit strings
maxlen = 1
for i in arr:
tmp = len(signedIntToBits(i*20))
if tmp > maxlen:
maxlen = tmp
# build array
bits = intToBits(maxlen,5)
for i in arr:
bits += signedIntToBits(i*20, maxlen)
return bits
def floatsToBits(arr):
""" Given a few (signed) numbers, convert them to bits,
stored as FB (float bit values). We always use 16.16.
Negative numbers are not (yet) possible, because I don't
know how the're implemented (ambiguity).
"""
bits = intToBits(31, 5) # 32 does not fit in 5 bits!
for i in arr:
if i<0:
raise ValueError("Dit not implement negative floats!")
i1 = int(i)
i2 = i - i1
bits += intToBits(i1, 15)
bits += intToBits(i2*2**16, 16)
return bits
## Base Tag
class Tag:
def __init__(self):
self.bytes = ''
self.tagtype = -1
def ProcessTag(self):
""" Implement this to create the tag. """
raise NotImplemented()
def GetTag(self):
""" Calls processTag and attaches the header. """
self.ProcessTag()
# tag to binary
bits = intToBits(self.tagtype,10)
# complete header uint16 thing
bits += '1'*6 # = 63 = 0x3f
# make uint16
bb = intToUint16( int(str(bits),2) )
bb = bytes(bb)
# now add 32bit length descriptor
bb += intToUint32(len(self.bytes))
# done, attach and return
bb += self.bytes
return str(bb)
def MakeRectRecord(self, xmin, xmax, ymin, ymax):
""" Simply uses makeCompactArray to produce
a RECT Record. """
return twitsToBits([xmin, xmax, ymin, ymax])
def MakeMatrixRecord(self, scale_xy=None, rot_xy=None, trans_xy=None):
# empty matrix?
if scale_xy is None and rot_xy is None and trans_xy is None:
return "0"*8
# init
bits = BitArray()
# scale
if scale_xy:
bits += '1'
bits += floatsToBits([scale_xy[0], scale_xy[1]])
else:
bits += '0'
# rotation
if rot_xy:
bits += '1'
bits += floatsToBits([rot_xy[0], rot_xy[1]])
else:
bits += '0'
# translation (no flag here)
if trans_xy:
bits += twitsToBits([trans_xy[0], trans_xy[1]])
else:
bits += twitsToBits([0,0])
# done
return bits
## Control tags
class ControlTag(Tag):
def __init__(self):
Tag.__init__(self)
class FileAttributesTag(ControlTag):
def __init__(self):
ControlTag.__init__(self)
self.tagtype = 69
def ProcessTag(self):
self.bytes = bytes( '\x00' * (1+3) )
class ShowFrameTag(ControlTag):
def __init__(self):
ControlTag.__init__(self)
self.tagtype = 1
def ProcessTag(self):
self.bytes = bytes()
class SetBackgroundTag(ControlTag):
""" Set the color in 0-255, or 0-1 (if floats given). """
def __init__(self, *rgb):
self.tagtype = 9
if len(rgb)==1:
rgb = rgb[0]
self.rgb = rgb
def ProcessTag(self):
bb = bytes()
for i in range(3):
clr = self.rgb[i]
if isinstance(clr, float):
clr = clr * 255
bb += intToUint8(clr)
self.bytes = bb
class DoActionTag(Tag):
def __init__(self, action='stop'):
Tag.__init__(self)
self.tagtype = 12
self.actions = [action]
def Append(self, action):
self.actions.append( action )
def ProcessTag(self):
bb = bytes()
for action in self.actions:
action = action.lower()
if action == 'stop':
bb += '\x07'
elif action == 'play':
bb += '\x06'
else:
print "warning, unkown action: %s" % action
bb += intToUint8(0)
self.bytes = bb
## Definition tags
class DefinitionTag(Tag):
counter = 0 # to give automatically id's
def __init__(self):
Tag.__init__(self)
DefinitionTag.counter += 1
self.id = DefinitionTag.counter # id in dictionary
class BitmapTag(DefinitionTag):
def __init__(self, im):
DefinitionTag.__init__(self)
self.tagtype = 36 # DefineBitsLossless2
# convert image (note that format is ARGB)
# even a grayscale image is stored in ARGB, nevetheless,
# the fabilous deflate compression will make it that not much
# more data is required for storing (25% or so, and less than 10%
# when storing RGB as ARGB).
if len(im.shape)==3:
if im.shape[2] in [3, 4]:
tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8)*255
for i in range(3):
if im.dtype in [np.float32 or np.float64]:
tmp[:,:,i+1] = im[:,:,i]*255
else:
tmp[:,:,i+1] = im[:,:,i]
if im.shape[2]==4:
tmp[:,:,0] = im[:,:,3] # swap channel where alpha is in
else:
raise ValueError("Invalid shape to be an image.")
elif len(im.shape)==2:
tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8)*255
for i in range(3):
if im.dtype in [np.float32 or np.float64]:
tmp[:,:,i+1] = im[:,:]*255
else:
tmp[:,:,i+1] = im[:,:]
else:
raise ValueError("Invalid shape to be an image.")
# we changed the image to uint8 4 channels.
# now compress!
self._data = zlib.compress(tmp.tostring(), zlib.DEFLATED)
self.imshape = im.shape
def ProcessTag(self):
# build tag
bb = bytes()
bb += intToUint16(self.id) # CharacterID
bb += intToUint8(5) # BitmapFormat
bb += intToUint16(self.imshape[1]) # BitmapWidth
bb += intToUint16(self.imshape[0]) # BitmapHeight
bb += self._data # ZlibBitmapData
self.bytes = bb
class PlaceObjectTag(ControlTag):
def __init__(self, depth, idToPlace=None, xy=(0,0), move=False):
ControlTag.__init__(self)
self.tagtype = 26
self.depth = depth
self.idToPlace = idToPlace
self.xy = xy
self.move = move
def ProcessTag(self):
# retrieve stuff
depth = self.depth
xy = self.xy
id = self.idToPlace
# build PlaceObject2
bb = bytes()
if self.move:
bb += '\x07'
else:
bb += '\x06' # (8 bit flags): 4:matrix, 2:character, 1:move
bb += intToUint16(depth) # Depth
bb += intToUint16(id) # character id
bb += self.MakeMatrixRecord(trans_xy=xy).ToBytes() # MATRIX record
self.bytes = bb
class ShapeTag(DefinitionTag):
def __init__(self, bitmapId, xy, wh):
DefinitionTag.__init__(self)
self.tagtype = 2
self.bitmapId = bitmapId
self.xy = xy
self.wh = wh
def ProcessTag(self):
""" Returns a defineshape tag. with a bitmap fill """
bb = bytes()
bb += intToUint16(self.id)
xy, wh = self.xy, self.wh
tmp = self.MakeRectRecord(xy[0],wh[0],xy[1],wh[1]) # ShapeBounds
bb += tmp.ToBytes()
# make SHAPEWITHSTYLE structure
# first entry: FILLSTYLEARRAY with in it a single fill style
bb += intToUint8(1) # FillStyleCount
bb += '\x41' # FillStyleType (0x41 or 0x43, latter is non-smoothed)
bb += intToUint16(self.bitmapId) # BitmapId
#bb += '\x00' # BitmapMatrix (empty matrix with leftover bits filled)
bb += self.MakeMatrixRecord(scale_xy=(20,20)).ToBytes()
# # first entry: FILLSTYLEARRAY with in it a single fill style
# bb += intToUint8(1) # FillStyleCount
# bb += '\x00' # solid fill
# bb += '\x00\x00\xff' # color
# second entry: LINESTYLEARRAY with a single line style
bb += intToUint8(0) # LineStyleCount
#bb += intToUint16(0*20) # Width
#bb += '\x00\xff\x00' # Color
# third and fourth entry: NumFillBits and NumLineBits (4 bits each)
bb += '\x44' # I each give them four bits, so 16 styles possible.
self.bytes = bb
# last entries: SHAPERECORDs ... (individual shape records not aligned)
# STYLECHANGERECORD
bits = BitArray()
bits += self.MakeStyleChangeRecord(0,1,moveTo=(self.wh[0],self.wh[1]))
# STRAIGHTEDGERECORD 4x
bits += self.MakeStraightEdgeRecord(-self.wh[0], 0)
bits += self.MakeStraightEdgeRecord(0, -self.wh[1])
bits += self.MakeStraightEdgeRecord(self.wh[0], 0)
bits += self.MakeStraightEdgeRecord(0, self.wh[1])
# ENDSHAPRECORD
bits += self.MakeEndShapeRecord()
self.bytes += bits.ToBytes()
# done
#self.bytes = bb
def MakeStyleChangeRecord(self, lineStyle=None, fillStyle=None, moveTo=None):
# first 6 flags
# Note that we use FillStyle1. If we don't flash (at least 8) does not
# recognize the frames properly when importing to library.
bits = BitArray()
bits += '0' # TypeFlag (not an edge record)
bits += '0' # StateNewStyles (only for DefineShape2 and Defineshape3)
if lineStyle: bits += '1' # StateLineStyle
else: bits += '0'
if fillStyle: bits += '1' # StateFillStyle1
else: bits += '0'
bits += '0' # StateFillStyle0
if moveTo: bits += '1' # StateMoveTo
else: bits += '0'
# give information
# todo: nbits for fillStyle and lineStyle is hard coded.
if moveTo:
bits += twitsToBits([moveTo[0], moveTo[1]])
if fillStyle:
bits += intToBits(fillStyle,4)
if lineStyle:
bits += intToBits(lineStyle,4)
return bits
#return bitsToBytes(bits)
def MakeStraightEdgeRecord(self, *dxdy):
if len(dxdy)==1:
dxdy = dxdy[0]
# determine required number of bits
xbits, ybits = signedIntToBits(dxdy[0]*20), signedIntToBits(dxdy[1]*20)
nbits = max([len(xbits),len(ybits)])
bits = BitArray()
bits += '11' # TypeFlag and StraightFlag
bits += intToBits(nbits-2,4)
bits += '1' # GeneralLineFlag
bits += signedIntToBits(dxdy[0]*20,nbits)
bits += signedIntToBits(dxdy[1]*20,nbits)
# note: I do not make use of vertical/horizontal only lines...
return bits
#return bitsToBytes(bits)
def MakeEndShapeRecord(self):
bits = BitArray()
bits += "0" # TypeFlag: no edge
bits += "0"*5 # EndOfShape
return bits
#return bitsToBytes(bits)
## Last few functions
def buildFile(fp, taglist, nframes=1, framesize=(500,500),
fps=10, version=8):
""" Give the given file (as bytes) a header. """
# compose header
bb = bytes()
bb += 'F' # uncompressed
bb += 'WS' # signature bytes
bb += intToUint8(version) # version
bb += '0000' # FileLength (leave open for now)
bb += Tag().MakeRectRecord(0,framesize[0], 0, framesize[1]).ToBytes()
bb += intToUint8(0) + intToUint8(fps) # FrameRate
bb += intToUint16(nframes)
fp.write(bb)
# produce all tags
for tag in taglist:
fp.write( tag.GetTag() )
# finish with end tag
fp.write( '\x00\x00' )
# set size
sze = fp.tell()
fp.seek(4)
fp.write( intToUint32(sze) )
def writeSwf(filename, images, fps=10, repeat=True, delays=None):
""" writeSwf(filename, images, fps=10, repeat=True, delays=None)
Write an swf-file from the specified images.
images should be a list of numpy arrays or PIL images.
Numpy images of type float should have pixels between 0 and 1.
Numpy images of other types are expected to have values between 0 and 255.
When repeat is False, the movie is finished with a stop action.
delays (when given) should be a list (or numpy array) of integers
specifying for each image how many frames it should be shown.
"""
t0 = time.time()
# check images
if not images:
raise ValueError("Image list is empty!")
images2 = []
for im in images:
if PIL and isinstance(im, PIL.Image.Image):
im = np.asarray(im)
images2.append(im)
# init
taglist = [ FileAttributesTag(), SetBackgroundTag(0,0,0) ]
# check delays
if delays is None:
delays = [1 for i in range(len(images2))]
if len(delays) != len(images2):
raise Exception("Amount of delays does not match amount of images.")
# produce series of tags for each image
t1 = time.time()
nframes = 0
for im in images2:
bm = BitmapTag(im)
wh = (im.shape[1], im.shape[0])
sh = ShapeTag(bm.id, (0,0), wh)
po = PlaceObjectTag(1,sh.id, move=nframes>0)
taglist.extend( [bm, sh, po] )
for i in range(delays[nframes]):
taglist.append( ShowFrameTag() )
nframes += 1
if not repeat:
taglist.append(DoActionTag('stop'))
# build file
#print "prepared tags (%1.2f s), building file..." % (time.time()-t1)
t1 = time.time()
fp = open(filename,'wb')
try:
buildFile(fp, taglist, nframes=nframes, framesize=wh, fps=fps)
except Exception:
raise
finally:
fp.close()
#print "build tags (%1.2f s)" % (time.time()-t1)
tt = time.time()-t0
print "written %i frames to swf in %1.2f seconds (%1.0f ms/frame)" % (
len(images), tt, 1000*tt/len(images) )
if __name__ == "__main__":
#import visvis as vv
im = np.zeros((200,200), dtype=np.uint8)
im[10:30,:] = 100
im[:,80:120] = 255
im[-50:-40,:] = 50
#im = vv.imread(r'D:\almar\projects\_p\smith.jpg')
images = [im*i for i in np.arange(0.1,1,0.1)]
delays = [1 for i in range(len(images))]
delays[2]=3
delays[3]=5
writeSwf( 'test.swf', images, 5, 1, delays )